Современные мобильные гаджеты могут совмещать разные функции – средство связи, mp3-плеер, фотоаппарат, диктофон, радиоприемник, wi-fi и т.д. Телефон стал, по сути, многофункциональной игрушкой для взрослых. И возникает логичный вопрос: как все это помещается в такое небольшое устройство?

Мобильный телефон – это довольно сложное устройство, главной деталью в котором является специальная плата. Именно она отвечает за все возложенные на телефон задачи. Ее также часто называют материнской платой. К ней подключаются разные устройства (камера, дисплей и т.д.), которые обеспечивают взаимодействие пользователя с телефоном.

Механические части мобильника

Что касается корпуса мобильного телефона, то существуют три основные формы – слайдер, раскладушка (книжка) и моноблок. Есть также еще флип (откидывающаяся крышка, которая закрывает клавиатуру) и ротатор (части корпуса могут поворачиваться относительно друг друга), но они встречаются очень редко.

Моноблок состоит из передней и задней панели. Задняя панель обычно совмещена с аккумуляторным отсеком или самим аккумулятором. Корпус телефона-раскладушки состоит из верхней и нижней части, а также поворотного механизма. А корпус телефона-слайдера обязательно имеет салазки, по которым и происходит скольжение частей корпуса. Также отдельной частью корпуса считается и дисплей телефонов.

Клавиатура в мобильниках состоит из двух частей. Первая из них видимая – это, как правило, пластиковые кнопки, а вторая скрытая. Она являет собой металлическую подложку, которая замыкает контакты клавиатуры.

Важным узлом мобильного телефона является аккумулятор, поскольку именно он обеспечивает его работу. В зависимости от типа аккумуляторы бывают никель-металлогидридные, литий-полимерные и литий-ионные.

Дисплеи в мобильных телефонах могут устанавливать двух типов – черно-белые и цветные. Сейчас используются только цветные. В слайдерах или раскладушках часто используется дисплейный модуль – дисплей (или два дисплея) на одной плате. На эту плату припаивают все необходимые для работы компоненты, в том числе и динамики телефона.

Среди прочих механических частей – микрофон, разговорный динамик, камера, вибромоторчик, антенна. В современные мобильные телефоны добавили еще несколько новых деталей – оперативную память, Wi-Fi модуль и т.д.

Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь…

Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.

После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети. Сложно? Давайте разберемся подробнее. Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:

2.

Антенна Базовой Станции разделена на несколько секторов, каждый из которых «светит» в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:

3.

Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи. Базовая Станция может работать в трех диапазонах: 900 МГц — сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий 1800 МГц — сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе 2100 МГц — Сеть 3G Вот так выглядит шкаф с 3G оборудованием:

4.

На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.

5.

6.

Сигнал частотой 900 МГц может бить до 35 километров, хотя «дальность» некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров… Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах. Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется. Еще мне рассказали о так называемой «проблеме верхних этажей». Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может «видеть» одну БС, а во второй — другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как «соседние» у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:

Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем. Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга. SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала. Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками. Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле. С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС — это просто набор шкафов:

7.

В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую. Гораздо интереснее выглядит коммутатор:

8.

9.

Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:

10.

11.

12.

Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до «девушки», а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:

13.

Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют «ежики». Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из «Большой Тройки»:

14.

Вся крыша такого автомобиля утыкана антеннами:

15.

Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:

16.

Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):

17.

Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов. Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет «мигать лампочка». ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет «мигать лампочка». Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается «инцидент», который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования. За коммутаторами круглосуточно следят по 2 инженера:

18.

На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:

19.

Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:

22.

21.

Сотовая связь считается одним из самых полезных изобретений человечества - наряду с колесом, электричеством, интернетом и компьютером. И лишь за несколько десятилетий эта технология пережила целый ряд революций. С чего начиналось беспроводное общение, как работают соты и какие возможности откроет новый мобильный стандарт 5G?

Первое использование подвижной телефонной радиосвязи относится к 1921 году - тогда в США полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приемникам в автомобилях полицейских.

Как появилась сотовая связь

Впервые идея сотовой связи была выдвинута в 1947 году - над ней работали инженеры из Bell Labs Дуглас Ринг и Рэй Янг. Однако реальные перспективы ее воплощения стали вырисовываться только к началу 1970-х годов, когда сотрудники компании разработали рабочую архитектуру аппаратной платформы сотовой связи.

Так, американские инженеры предложили размещать передающие станции не в центре, а по углам «ячеек», а чуть позже была придумана технология, позволяющая абонентам передвигаться между этими «сотами», не прерывая связи. После этого осталось разработать действующее оборудование для такой технологии.

Задачу успешно решила компания Motorola - ее инженер Мартин Купер 3 апреля 1973 года продемонстрировал первый работающий прототип мобильного телефона. Он позвонил начальнику исследовательского отдела компании-конкурента прямо с улицы и рассказал ему о собственных успехах.

Руководство Motorola немедленно вложило в перспективный проект 100 миллионов долларов, однако на коммерческий рынок технология вышла только через десять лет. Такая задержка связана с тем, что сначала требовалось создать глобальную инфраструктуру базовых станций сотовой связи.


На территории США этой работой занялась компания AT&T - телекоммуникационный гигант добился от федерального правительства лицензирования нужных частот и построил первую сотовую сеть, которая охватила крупнейшие американские города. В качестве первого мобильника выступила знаменитая модель Motorola DynaTAC 8000.

В продажу первый сотовый телефон поступил 6 марта 1983 года. Он весил почти 800 граммов, мог работать на одном заряде 30 минут в режиме разговора и заряжался около 10 часов. При этом аппарат стоил 3995 долларов - баснословную сумму по тем временам. Несмотря на это, мобильник мгновенно стал популярен.

Почему связь называется сотовой

Принцип мобильной связи прост - территория, на которой обеспечивается соединение абонентов, разбивается на отдельные ячейки или «соты», каждую из которых обслуживает базовая станция. При этом в каждой «соте» абонент получает идентичные услуги, поэтому сам он никак не чувствует пересечения этих виртуальных границ.

Обычно базовая станция в виде пары железных шкафов с оборудованием и антенн размещается на специально построенной вышке, однако в городе их нередко размещают на крышах высотных зданий. В среднем каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров.

Для улучшения качества обслуживания операторы также устанавливают фемтосоты - маломощные и миниатюрные станции сотовой связи, предназначенные для обслуживания небольшой территории. Они позволяют резко улучшить покрытие в тех местах, где это необходимо.Сотовую связь в России объединят с космосом

Находящийся в сети мобильник прослушивает эфир и находит сигнал базовой станции. В современную SIM-карту, кроме процессора и оперативки, вшит уникальный ключ, позволяющий авторизоваться в сотовой сети. Связь телефона со станцией может осуществляться по разным протоколам - например, цифровым DAMPS, CDMA, GSM, UMTS.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Если телефон выходит из поля действия базовой станции, аппарат налаживает связь с другими - установленное абонентом соединение незаметно передается другим «сотам», что обеспечивает непрерывную связь при перемещениях.

В России для вещания сертифицированы три диапазона - 800 МГц, 1800 МГц и 2600 МГц. Диапазон 1800 МГц считается самым популярным в мире, так как сочетает высокую емкость, большой радиус действия и высокую проникающую способность. Именно в нем сейчас работают большинство мобильных сетей.

Какие стандарты мобильной связи бывают

Первые мобильники работали с технологий 1G - это самое первое поколение сотовой связи, которое опиралось на аналоговые телекоммуникационные стандарты, главным из которых стал NMT - Nordic Mobile Telephone. Он предназначался исключительно для передачи голосового трафика.

К 1991 году относят рождение 2G - главным стандартом нового поколения стал GSM (Global System for Mobile Communications). Данный стандарт поддерживается до сих пор. Связь в этом стандарте стала цифровой, появилась возможность шифрования голосового трафика и отправки СМС.

Скорость передачи данных внутри GSM не превышала 9,6 кбит/с, что делало невозможной передачу видео или высококачественного звука. Проблему был призван решить стандарт GPRS, известный как 2.5G. Он впервые позволил пользоваться сетью Интернет владельцам мобильных телефонов.


Такой стандарт уже обеспечил скорость передачи данных до 114 Кбит/c. Однако вскоре он также перестал удовлетворять постоянно растущие запросы пользователей. Для решения этой проблемы в 2000 году был разработан стандарт 3G, который обеспечивал доступ к услугам Сети на скорости передачи данных в 2 Мбита.

Еще одним отличием 3G стало присвоение каждому абоненту IP-адреса, что позволило превратить мобильники в маленькие компьютеры, подключенные к интернету. Первая коммерческая сеть 3G была запущена 1 октября 2001 года в Японии. В дальнейшем пропускная способность стандарта неоднократно увеличивалась.

Наиболее современный стандарт - связь четвертого поколения 4G, которая предназначена только для высокоскоростных сервисов передачи данных. Пропускная способность сети 4G способна достигать 300 Мбит/сек, что дает пользователю практически неограниченные возможности работы в интернете.

Сотовая связь будущего

Стандарт 4G заточен на непрерывную передачу гигабайтов информации, в нем даже отсутствует канал для передачи голоса. За счет чрезвычайно эффективных схем мультиплексирования загрузка фильма высокого разрешения в такой сети займет у пользователя 10-15 минут. Однако даже его возможности уже считаются ограниченными.

В 2020 году ожидается официальный запуск нового поколения связи стандарта 5G, который позволит передачу больших объемов данных на сверхвысоких скоростях до 10 Гбит/сек. Кроме этого, стандарт позволит подключить к высокоскоростному интернету до 100 миллиардов устройств.

Именно 5G позволит появиться настоящему интернету вещей - миллиарды устройств будут обмениваться информацией в реальном времени. По оценке экспертов, сетевой трафик скоро вырастет на 400%. Например, автомобили начнут постоянно находиться в глобальной Сети и получать данные о дорожной обстановке.

Низкая степень задержки обеспечит связь между транспортными средствами и инфраструктурой в режиме реального времени. Ожидается, что надежное и постоянно действующее соединение впервые откроет возможность для запуска на дорогах полностью автономных транспортных средств.

Российские операторы уже экспериментируют с новыми спецификациями - например, работы в этом направлении ведет «Ростелеком». Компания подписала соглашение о строительстве сетей 5G в инновационном центре «Сколково». Реализация проекта входит в государственную программу «Цифровая экономика», недавно утвержденную правительством.

Вряд ли возможно сегодня найти человека, который бы никогда не пользовался сотовым телефоном. Но каждый ли понимает, как работает сотовая связь? Как устроено и работает то, к чему мы все давно привыкли? Передаются ли сигналы от базовых станций про проводам или все это действует как-то иначе? А может быть вся сотовая связь функционирует лишь за счет радиоволн? На эти и другие вопросы попробуем дать ответ в нашей статье, оставив описание стандарта GSM за ее рамками.

В момент, когда человек пытается совершить вызов со своего мобильного телефона, или когда начинают звонить ему, телефон посредством радиоволн подключается к одной из базовых станций (наиболее доступной), к одной из ее антенн. Базовые станции можно наблюдать то там, то тут, взглянув на дома наших городов, на крыши и на фасады промышленных зданий, на высотки, наконец на специально возведенные для станций мачты красно-белого цвета (особенно вдоль автострад).

Станции эти выглядят как прямоугольные коробки серого цвета, из которых в разные стороны торчат разнообразные антенны (обычно до 12 антенн). Антенны здесь работают как на прием, так и на передачу, и принадлежат они оператору сотовой связи. Антенны базовой станции направлены во всевозможные стороны (сектора), чтобы обеспечить «покрытие сетью» абонентам со всех сторон на расстоянии до 35 километров.

Антенна одного сектора в состоянии обслуживать одновременно до 72 звонков, и если антенн 12, то представьте себе: 864 звонка способна в принципе обслужить одна крупная базовая станция одновременно! Хотя обычно ограничиваются 432 каналами (72*6). Каждая антенна соединена кабелем с управляющим блоком базовой станции. А уже блоки нескольких базовых станций (каждая станция обслуживает свою часть территории) присоединяются к контроллеру. К одному контроллеру присоединяется до 15 базовых станций.

Базовая станция в принципе способна функционировать на трех диапазонах: сигнал 900 МГц лучше проникает внутрь зданий и сооружений, распространяется дальше, поэтому именно данный диапазон часто используют в деревнях и на полях; сигнал на частоте 1800 МГц распространяется не так далеко, но на одном секторе устанавливают больше передатчиков, поэтому в городах ставят чаще именно такие станции; наконец 2100 МГц — это сеть 3G.

Контроллеров, конечно, в населенном пункте или районе, может быть несколько, поэтому контроллеры, в свою очередь, присоединяются кабелями к коммутатору. Задача коммутатора — связать сети операторов мобильной связи друг с другом и с городскими линиями обычной телефонной связи, междугородной связи и международной связи. Если сеть небольшая, то достаточно одного коммутатора, если крупная — используются два и более коммутаторов. Коммутаторы объединяются между собой проводами.

В процессе перемещения человека, разговаривающего по мобильнику, по улице, например: идет он пешком, едет в общественном транспорте, или передвигается на личном авто, - его телефон не должен ни на мгновение потерять сеть, нельзя оборвать разговор.

Непрерывность связи получается благодаря способности сети базовых станций очень оперативно переключать абонента с одной антенны на другую в процессе его перемещения от зоны действия одной антенны — в зону действия другой (от соты к соте). Абонент сам не замечает, как перестает быть связан с одной базовой станцией, и подключен уже к другой, как переключается от антенны — к антенне, от станции — к станции, от контроллера — к контроллеру…

При этом коммутатор обеспечивает оптимальное распределение нагрузки по многоуровневой схеме сети, чтобы снизить вероятность выхода оборудования из строя. Многоуровневая сеть строится так: сотовый телефон — базовая станция — контроллер — коммутатор.

Допустим, мы совершаем вызов, и вот сигнал уже добрался до коммутатора. Коммутатор передает наш звонок в сторону абонента назначения — в городскую сеть, в сеть международной или междугородней связи, либо на сеть другого мобильного оператора. Все это происходит очень быстро с использованием высокоскоростных оптоволоконных кабельных каналов.

Далее наш звонок поступает на коммутатор, что расположен на стороне принимающего звонок (вызываемого нами) абонента. В «приемном» коммутаторе уже есть данные о том, где находится вызываемый абонент, в какой зоне действия сети: какой контроллер, какая базовая станция. И вот, с базовой станции начинается опрос сети, находится адресат, и на его телефон «поступает вызов».

Вся цепочка описанных событий, с момента набора номера до момента раздавшегося на принимающей стороне звонка, длится обычно не более 3 секунд. Так мы можем сегодня звонить в любую точку мира.

Андрей Повный

В состав телефонных аппаратов, предназначаемых для работы в телефонных сетях, входят следующие обязательные элементы: микрофон и телефон, объединенные в микротелефонную трубку, вызывное устройство, трансформатор, разделительный конденсатор, номеронабиратель, рычажный переключатель. На принципиальных электрических схемах телефонный аппарат обозначают буквой Е.

Кратко рассмотрим назначение основных элементов телефонного аппарата.

Микрофон служит для преобразования звуковых колебаний речи и электрический сигнал звуковой частоты. Микрофоны могут быть угольными, конденсаторными, электродинамическими, электромагнитными, пьезоэлектрическими. Их можно классифицировать на активные и пассивные. Активные микрофоны непосредственно преобразуют звуковую энергию в электрическую. В пассивных же микрофонах звуковая энергия преобразуется в изменение какого-либо параметра (чаще всего — емкости и сопротивления). Для работы такого микрофона обязательно требуется вспомогательный источник питания.

В массовых телефонных аппаратах применяют, как правило, угольные микрофоны, в которых под действием звуковых волн изменяется электрическое сопротивление угольного порошка, находящегося под мембраной. Наиболее широко используют микрофонные капсюли типов МК-10, МК-16, обладающие достаточно высокой чувствительностью (в описываемых устройствах применены в основном угольные микрофоны). На принципиальных схемах микрофон обозначают латинскими буквами ВМ.

Следует отметить, что в последнее время ряд телефонных аппаратов оснащают также конденсаторными микрофонами типов МКЭ-3, КМ-4, КМ-7.

Телефоном называют прибор, предназначенный для преобразования электрических сигналов в звуковые и рассчитанный для работы в условиях нагрузки на ухо человека. В зависимости от конструктивных особенностей телефоны подразделяют на электромагнитные, электродинамические, с дифференциальной магнитной системой и пьезоэлектрические. В телефонных аппаратах наибольшее распространение получили телефоны электромагнитного типа. В таких телефонах катушки закреплены неподвижно. Под действием протекающего в катушках тока возникает переменное магнитное поле, приводящее в движение подвижную мембрану, которая и излучает звуковые колебания. В современных телефонных аппаратах применяют в

основном телефонные капсюли типа ТК-67, а в аппаратах устаревших конструкций — также ТК-47 и ТА-4.

Полоса рабочих частот для микрофонов и телефонов, используемых в телефонных аппаратах, составляет примерно 300...3500 Гц. На принципиальных схемах телефон обозначают латинскими буквами BF.

Для удобства пользования микрофон и телефон объединены в микротелефонной трубке.

Вызывное устройство служит для преобразования вызывного сигнала переменного тока в звуковой сигнал. Применяют электромагнитные или электронные вызывные устройства. Первое из них представляет собой одно- или двухкатушечный звонок. Звуковой сигнал образуется в результате удара бойка о звонковые чашки. Протекающий в катушках ток частотой 16...50 Гц создаст переменное магнитное поле, которое приводит в движение якорь с бойком. Как правило, в телефонных звонках используют постоянные магниты, создающие определенную полярность магнитопровода, поэтому такие звонки называют поляризованными. Сопротивление обмоток звонка постоянному току составляет 1,5...3 кОм, рабочее напряжение 30...50 В. На принципиальных схемах звонок обозначают латинскими буквами НА.

Электронное вызывное устройство преобразует вызывной сигнал в звуковой тональный сигнал, который может имитировать, например, пение птицы. В качестве акустического излучателя при этом используют телефон или пьезоэлектрический вызывной прибор ВП-1. Такие вызывные устройства применяют, например, в современных телефонных аппаратах ТА-1131 "Лана", ТА-1165 "Стелла" и др. Электронные вызывные устройства выполняют на транзисторах.

Трансформатор телефонного аппарата предназначен для связи отдельных элементов разговорной части и для согласования их сопротивлений с входным сопротивлением абонентской линии. Он, кроме того, позволяет устранять так называемый местный эффект, о чем будет сказано ниже. Трансформаторы изготавливают с отдельными обмотками или в виде автотрансформаторов.

Разделительный конденсатор служит элементом подключения вызывного устройства к абонентской линии в режиме ожидания и приема вызова. При этом обеспечивается практически бесконечно большое сопротивление телефонного аппарата постоянному току и малое сопротивление — переменному. В телефонных аппаратах применяют разделительные конденсаторы типов МБМ, К73-П емкостью 0,25...1 мкф и на номинальное напряжение 160...250 В.

Номеронабиратель обеспечивает подачу импульсов набора номера в абонентскую линию с целью установления требуемого соединения. Импульсы служат для периодических замыканий и размыканий линии. В современных телефонных аппаратах применяют механические и электронные номеронабиратели. Дисковый механический номеронабиратель имеет диск с десятью отверстиями. При вращении диска по часовой стрелке заводится пружина механизма номеронабирателя. После отпускания диска он вращается в обратную сторону под действием пружины, при этом происходит периодическое размыкание контактов, коммутирующих абонентскую линию. Необходимая скорость и равномерность вращения диска достигаются наличием центробежного регулятора или фрикционного механизма. Формирование импульсов при свободном движении диска обеспечивает их стабильную частоту и необходимый интервал между импульсными посылками, соответствующими двум соседним цифрам набираемого номера. Необходимый интервал обеспечивается благодаря тому, что число размыканий импульсных контактов всегда выбирается на одно-два больше, чем требуется подать импульсов в линию. Этим обеспечивается гарантированная пауза между пачками импульсов (0,2...0,8 с). При этом указанные лишние импульсы в линию нс поступают, поскольку в это время импульсные контакты шунтируются одной из групп контактов номеронабирателя. Имеются также контакты, замыкающие телефон при наборе номера, чтобы исключить неприятные щелчки. Частота импульсов, формируемых номеронабирателем, должна составлять (10±1) имп./с. Число проводов, соединяющих номеронабиратель с другими элементами телефонного аппарата, может быть 3 — 5.

Электронные номеронабиратели, которыми комплектуются многие современные телефонные аппараты (например, ТА-5, ТА-7, ТА-101), выполнены на интегральных микросхемах и транзисторах. Набор номера осуществляют нажатием кнопок клавиатуры — так называемой тастатуры. Поскольку скорость нажатия кнопок может быть сколь угодно большой, в среднем на наборе одной цифры номера экономится 0,5 с. Кроме того, тастатурные номеронабиратели предоставляют пользователям различные удобства, экономящие время:

запоминание последнего набранного номера, возможность запоминания нескольких десятков номеров и др. Питание электронных номеронабирателей осуществляется как от абонентской линии, так и от сети напряжением 220 В через блок питания.

Рычажный переключатель обеспечивает подключение к абонентской линии вызывного устройства телефонного аппарата в нерабочем состоянии (микротелефонная трубка лежит) и разговорных цепей или номеронабирателя в рабочем состоянии (трубка снята). Рычажный переключатель представляет собой группы из нескольких переключающих контактов, срабатывающих при снятии телефонной трубки.

Кроме перечисленных элементов в состав телефонного аппарата входят также резисторы, конденсаторы, диоды, транзисторы, образующие разговорную цепь аппарата.

Рассмотрим устройство телефонного аппарата (ТА) в целом.

При работе телефонного аппарата в разговорном режиме возникает местный эффект, т.е. прослушивание собственной речи в телефоне аппарата. Местный эффект объясняется тем, что ток, протекающий через микрофон, поступает нс только в абонентскую линию, но и в собственный телефон. Для устранения этого нежелательного явления в современных телефонных аппаратах используют противо-местные устройства.

Существуют различные типы подобных устройств. Рассмотрим одно из них — противоместное устройство мостового типа (рис. 1).

Микрофон ВМ1, телефон BF1, балансный контур Zб и линия Zл связаны между собой обмотками трансформатора Т1: линейной I, балансной II и телефонной III. Во время разговора, когда сопротивление микрофона изменяется, разговорные токи звуковой частоты протекают по двум цепям: линейной и балансной. Из схемы видно, что токи, протекающие через обмотки I и II, суммируются с противоположными знаками, поэтому ток в обмотке 111 будет отсутствовать в том случае, если токи в линейной и балансной обмотках равны по величине. Это достигается соответствующим выбором элементов балансного контура Zб, параметры которого зависят от параметров линии Zл. Сопротивление линии содержит активную и емкостную составляющие, поэтому балансный контур выполняют из резисторов и конденсаторов.

Полное устранение местного эффекта достигается только на одной определенной частоте и определенных параметрах линии, что в реальных условиях невыполнимо, поскольку речевой сигнал содержит широкий спектр частот, а параметры линии изменяются в широких пределах (зависят от удаленности абонента от АТС, переходных сопротивлений и емкостей в кабелях и др.), поэтому на практике местный эффект не уничтожается полностью, а только ослабляется.

Рассмотрим схему телефонного аппарата ТА-72М-5 (рис. 2), предназначенного для работы в городских сетях. Его коммутационно-вызывную часть образуют рычажный переключатель SA1, звонок НА1, разделительный конденсатор С1 и номеронабиратель SA2. Разговорная часть телефонного аппарата состоит из телефона BF1, микрофона ВМ 1, трансформатора Т 1, балансного контура (конденсаторы С1 и С2, резисторы R1—R3) и ограничительных диодов VD1, VD2. Разговорная часть выполнена по противоместной схеме мостового типа.

В исходном состоянии контактов рычажного переключателя SA1 и номеронабирателя SA2, показанном на схеме, к линии подключены последовательно соединенные между собой звонок НА1 и конденсатор С1, а разговорная часть отключена. При появлении вызывного напряжения на зажимах 1 и 4 телефонного аппарата ток протекает по цепи: зажим 1 — перемычка — зажим 3 — обмотка звонка — нормально замкнутые контакты SA1.2 рычажного переключателя — конденсатор С1 — зажим 4. (Направление тока выбрано условно — с таким же успехом его можно было бы считать протекающим от зажима 4 к зажиму 1.) Услышав звонок, абонент снимает трубку. При этом контакты SA1.1 и SA1.2 переключаются в другое положение, отключая вызывную цепь и подключая к линии разговорную цепь. Сопротивление постоянному току между зажимами 1 и 4 изменяется от очень большого (сотни килоом — мегаомы) до относительно малого (сотни ом), это фиксируется приборами телефонной станции, и они переключаются в разговорный режим.

При наборе номера контакты SA2.1 номеронабирателя находятся в замкнутом состоянии во время прямого и возвратного вращения диска, что обеспечивает шунтирование разговорной цепи и исключает прослушивание щелчков в телефоне. При возвратном вращении диска номеронабирателя контакты SA2.2 разрывают линейную цепь, и приборы станции по числу таких размыканий фиксируют номер вызываемого абонента.

Диоды VD1 и VD2 ограничивают выбросы напряжения на обмотках телефона и исключают резкие звуки, неприятные для уха.

Для работы в сетях телефонных станций ручного обслуживания используют телефонные аппараты без номеронабирателя. Схема одного из таких аппаратов (типа ТА-68ЦБ-2) показана на рис. 3. Основным отличием его от предыдущего аппарата является отсутствие контактов номеронабирателя и одной группы контактов рычажного переключателя, в связи с чем звонок и конденсатор С1 остаются подключенными к линии и в разговорном режиме. Однако они практически нс оказывают влияния на работу телефонного аппарата в таком режиме.

В устройствах телефонной связи, которые описаны в этой книге, можно использовать выпускаемые промышленностью телефонные аппараты как с номеронабирателем (ТА-68, ТА-72М-5, ТА-1146 и др.), так и без него (ТА-68ЦБ-2 и другие аналогичные). Но телефонные аппараты без номеронабирателя годятся только для телефонных коммутаторов с ручным управлением. Если в распоряжении радиолюбителя имеется телефонный аппарат, у которого исправны лишь трубка и звонок, его также можно использовать. В этом случае соединение элементов осуществляют в соответствии со схемой, приведенной на рис. 4. Конденсатор С1 — типа К73-17, МБМ, МБГО. Следует отметить, что в таком телефонном аппарате в полной мере будет проявляться местный эффект, но ради простоты можно несколько поступиться удобством.

Рассмотрим кратко, каким образом осуществляется коммутация телефонных линий в городских АТС. С 1876 г., когда шотландец А.Г.Белл изобрел первый в мире двухпроводный телефон, принцип телефонной связи нс претерпел существенных изменений.

Схема организации телефонной связи между двумя абонентами показана на рис. 5. Ток питания телефонных аппаратов El, E2 про-

ходит через дроссели L1 и L2. Дроссели необходимы для того, чтобы не происходило замыкание разговорного (переменного) тока через источник питания постоянного тока Uпит, внутреннее сопротивление которого очень мало и составляет доли ома. Источник постоянного тока принято называть центральной батареей (ЦБ). Дроссели L1 и L2 имеют относительно небольшое сопротивление постоянному току (обычно не более 1 кОм). Индуктивность дросселей достаточно велика и в диапазоне частот разговорных токов (300...3500 Гц) создаст столь значительное сопротивление разговорному (переменному) току, что он практически не ответвляется в ЦБ и протекает в контуре между аппаратами Е1 и Е2. На АТС в качестве дросселей обычно используются обмотки двухобмоточных реле, причем эти реле одновременно служат для получения сигнала о вызове станции абонентом и сигнала окончания разговора (отбоя).

Индуктор формирует переменное вызывное напряжение частотой 16...50 Гц, которое приводит в действие вызывное устройство нужного телефонного аппарата.

Коммутация абонентов первоначально выполнялась на АТС вручную, затем стали использовать шаговые искатели, а в настоящее время коммутация осуществляется квазиэлектронным или электронным способом. Устройства коммутации АТС управляются импульса

ми постоянного тока, которые создаются номеронабирателем телефонного аппарата при наборе абонентом цифр номера вызываемого абонента.

Рисунок 6 иллюстрирует простейший принцип установления соединения на АТС. Телефонный аппарат первого абонента Е1 подключен к ЦБ (Uпит) через обмотки двухобмоточного реле К1. При снятии первым абонентом микротелефонной трубки аппарата Е1 реле К1 срабатывает и контактами К 1.2 подаст питание на обмотку реле К2. Это реле устроено таким образом, что отпускание якоря происходит не сразу после снятия напряжения с его обмотки, а с некоторой задержкой (в данном случае эта задержка составляет около 0,1 с). Контакты реле К2.2 подготавливают цепь питания шагового искателя КЗ. При наборе абонентом Е1 номера вызываемого абонента цепи питания обмоток реле К1 будут прерываться контактами номеронабирателя телефонного аппарата Е1 (это происходит при возвратном движении диска номеронабирателя). Контактами К1.1 подаются импульсы питания на обмотку шагового искателя КЗ соответственно цифре номера вызываемого абонента. По окончании вращения диска номеронабирателя телефонного аппарата Е1 контакты шагового искателя соединят линию вызывающего абонента с линией вызываемого, после чего абоненты смогут вести разговор.

Когда по окончании разговора абонент положит микротелефонную трубку на аппарат Е1, реле К1 отпустит, его контакты К 1.2 разомкнут цепь питания реле К2, которое спустя 0,1 с также отпустит. При этом через контакты К2.1, КЗ.4 и КЗ.3 будет подано питание на обмотку шагового искателя КЗ. Контакт КЗ.4 скользит по сплошной ламели шагового искателя и разомкнется только тогда, когда шаговый искатель придет в исходное состояние. Контакт КЗ.3 — это самопрерывающий контакт шагового искателя, который прерывает цепь питания обмотки шагового искателя при притяжении якоря к сердеч-

нику. Благодаря этому контакту на обмотке КЗ формируется серия импульсов, которые последовательно устанавливают контакты КЗ.1 и КЗ.2 в исходное положение.

Четкость работы абонентских реле и шагового искателя зависит от времени размыкания контактов номеронабирателя, которое не должно превышать 0,1 с. В противном случае при размыкании контактов К 1.2 реле К2 не сможет удержать якорь, и соединения не произойдет. Поэтому параметры номеронабирателей телефонных аппаратов должны соответствовать следующим требованиям:

1) частота импульсов номеронабирателя 10±1 имп/с;

2) период повторения импульсов 0,95...0,105 с;

3) пауза между сериями импульсов не менее 0,64 с;

4) отношение времени размыкания к времени замыкания импульсного контакта номеронабирателя, называемое импульсным коэффициентом, в зависимости от типа АТС 1,3...1,9.

Центральная батарея АТС осуществляет питание линий абонентов постоянным напряжением Uпит = 60 В. При снятии микротелефонной трубки телефонного аппарата линия АТС оказывается нагруженной на внутреннее сопротивление телефонного аппарата, в результате напряжение на зажимах линии падает до 10...20 В (в зависимости от удаленности абонента от АТС и типа применяемого аппарата). Внутреннее сопротивление телефонного аппарата при снятой трубке может составлять 200...800 Ом, а рабочий (разговорный) ток через аппарат — 20...40 мА. Приведенное к гнездам абонента сопротивление АТС, которое включает сопротивления линии, обмоток реле К1 (см.рис. 5) и внутреннее сопротивление центральной батареи, может составлять от 600 Ом до 2 кОм.

Для телефонного аппарата с дисковым номеронабирателем набор номера абонента осуществляется следующим образом: при вращении

диска по часовой стрелке до пальцевого упора контакты номеронабирателя замыкают линию, а при возвратном вращении линия размыкается такое число раз, которое соответствует набранной цифре. На рис. 7 показана временная диаграмма работы телефонного аппарата.

В качестве вызывного сигнала на АТС используется переменное напряжение 80...120 В частотой 16...30 Гц.

В устройствах телефонной связи, описанных в книге, применяют два способа соединения линий телефонных аппаратов: параллельное и последовательное (рис. 8).

Схема с параллельным соединением телефонных аппаратов была рассмотрена выше (рис. 5). Отличие схемы, приведенной на рис. 8,а, состоит в том, что вместо двух катушек индуктивности включен стабилизатор тока СТ, т.е. двухполюсник, ток через который сохраняется неизменным при изменении параметров внешней цепи в определенных пределах.

В любом случае справедливо соотношение L1 + L2 = L= const. поэтому изменение тока в цепи первого абонента вызывает точно такое же изменение тока в цепи второго абонента, но с противоположным знаком. При этом обеспечивается максимально возможная громкость разговора. Практически в переговорных устройствах вместо стабилизатора тока можно использовать резистор сопротивлением 1...5 кОм, однако следует учесть, что при этом громкость разговора несколько снизится.

На рис. 8,6 приведена схема последовательного соединения телефонных аппаратов. При таком соединении разговорный ток одного аппарата полностью протекает через второй аппарат, что обеспечивает максимально возможную громкость разговора (при данных условиях).

Следует заметить, что в городских АТС последовательный способ соединения линий телефонных аппаратов нс используется из-за сложности коммутации аппаратов. (В книге данный способ применяется в переговорных устройствах и коммутаторах с ручным управлением.)



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png