Юным радиолюбителям посвящается…

Предисловие

Радиосигнал, однажды сгенерированный, уносится в глубь Вселенной со скоростью света… Эта фраза, прочитанная в журнале «Юный техник» в далеком детстве произвела на меня очень сильное впечатление и уже тогда я твердо решил, что обязательно пошлю свой сигнал нашим «братьям по разуму», чего бы мне это не стоило. Но путь, от желания до воплощения мечты долог и непредсказуем…

Когда я только начинал заниматься радиоделом, мне очень хотелось построить портативную радиостанцию. В то время я думал, что она состоит из динамика, антенны и батарейки. Стоит только соединить их в правильном порядке и можно будет разговаривать с друзьями где-бы они не находились… Я изрисовал не одну тетрадку возможными схемами, добавлял всевозможные лампочки, катушки и проводки. Сегодня эти воспоминания вызывают у меня лишь улыбку, но тогда мне казалось, что еще чуть-чуть и чудо-устройство будет у меня в руках…

Я помню свой первый радиопередатчик. В 7 классе я ходил в кружок спортивной радиопеленгации (т.н. охоты на лис). В один из прекрасных весенних дней наша последняя «лиса» — приказала долго жить. Руководитель кружка, недолго думая, вручил мне её со словами — «… ну, ты там её почини…». Я наверное был страшно горд и счастлив, что мне доверили столь почетную миссию, но мои знания электроники на тот момент не дотягивали до «кандидатского минимума». Я умел отличать транзистор от диода и приблизительно представлял как они работают по отдельности, но как они работают вместе — для меня это было загадкой. Придя домой, я с благоговейным трепетом вскрыл небольшую металлическую коробочку. Внутри неё оказалась плата, состоящая из мультивибратора и генератора РЧ на транзисторе П416. Для меня это была вершина схемотехники. Самой загадочной деталью в данном устройстве была катушка задающего генератора (3,5МГц.), намотанная на броневом сердечнике. Детское любопытство пересилило здравый смысл и острая металлическая отвертка впилась в броневой кожух катушки. «Хрясь» — раздался хруст и кусок броневого корпуса катушки, со стуком упал на пол. Пока он падал, мое воображение уже нарисовало картину моего расстрела руководителем нашего кружка…

У этой истории был счастливый конец, правда случился он через месяц. «Лису» я все-таки починил, хотя точнее сказать — сделал её заново. Плата радиомаяка, сделанная из фольгированного гетинакса, не выдержала пыток моим 100 ваттным паяльником, дорожки отслоились от постоянной перепайки деталей… Пришлось плату делать заново. Спасибо моему папе, что принес (достал где-то с большим трудом) фольгированный гетинакс, а маме — за дорогой французский красный лак для ногтей, который я использовал для рисования платы. Новый броневой сердечник мне достать не удалось, но зато удалось аккуратно склеить старый клеем БФ… Отремонтированный радиомаяк радостно послал в эфир свое слабое «ПИ-ПИ-ПИ», но для меня это было сравни запуску первого искусственного спутника Земли, возвестившего человечеству о начале космической эры таким-же прерывистым сигналом на частоте 20 и 40 МГц. Вот такая история…

Схема устройства

В мире существует огромное количество схем генераторов, способных генерировать колебания различной частоты и мощности. Обычно, это достаточно сложные устройства на диодах, лампах, транзисторах или других активных элементах. Их сборка и настройка требует некоторого опыта и наличия дорогих приборов. И чем выше частота и мощность генератора, тем сложнее и дороже нужны приборы, тем опытнее должен быть радиолюбитель в данной теме.

Но сегодня, мне бы хотелось рассказать о достаточно мощном генераторе ВЧ, построенном всего на одном транзисторе. Причем работать этот генератор может на частотах до 2ГГц и выше и генерировать достаточно большую мощность — от единиц до десятков ватт, в зависимости от типа применяемого транзистора. Отличительной особенностью данного генератора, является использование симметричного дипольного резонатора, своеобразного открытого колебательного контура с индуктивной и емкостной связью. Не стоит пугаться такого названия — резонатор представляет собой две параллельные металлические полоски, расположенные на небольшом расстоянии друг от друга.

Свои первые опыты с генераторами подобного вида я проводил ещё в начале 2000-х годов, когда для меня стали доступны мощные ВЧ-транзисторы. С тех пор я периодически возвращался к этой теме, пока в середине лета на сайте VRTP.ru не возникла тема по использованию мощного однотранзисторного генератора в качестве источника ВЧ-излучения для глушения бытовой техники (музыкальных центров, магнитол, телевизоров) за счет наведения модулированных ВЧ-токов в электронных схемах этих устройств. Накопленный материал и лег в основу данной статьи.

Схема мощного генератора ВЧ, достаточно проста и состоит из двух основных блоков:

  1. Непосредственно сам автогенератор ВЧ на транзисторе;
  2. Модулятор — устройство для периодической манипуляции (запуска) генератора ВЧ сигналом звуковой (любой другой) частоты.

Детали и конструкция

«Сердцем» нашего генератора является высокочастотный MOSFET-транзистор . Это достаточно дорогостоящий и мало распространенный элемент. Его можно купить за приемлемую цену в китайских интернет-магазинах или найти в высокочастотном радиооборудовании — усилителях/генераторах высокой частоты, а именно, в платах базовых станций сотовой связи различных стандартов. В своем большинстве эти транзисторы разрабатывались именно под данные устройства.
Такие транзисторы, визуально и конструктивно отличаются от привычных с детства многим радиолюбителям КТ315 или МП38 и представляют собой «кирпичики» с плоскими выводами на мощной металлической подложке. Они бывают маленькие и большие в зависимости от выходной мощности. Иногда, в одном корпусе располагаются два транзистора на одной подложке (истоке). Вот как они выглядят:


Линейка внизу, поможет вам оценить их размеры. Для создания генератора могут быть использованы любые MOSFET-транзисторы. Я пробовал в генераторе следующие транзисторы: MRF284, MRF19125, MRF6522-70, MRF9085, BLF1820E, PTFA211801E — все они работают. Вот как данные транзисторы выглядят внутри:


Вторым, необходимым материалом для изготовления данного устройства является медь . Необходимы две полоски данного металла шириной 1-1,5см. и длинной 15-20см (для частоты 400-500 МГц). Можно сделать резонаторы любой длинны, в зависимости от желаемой частоты генератора. Ориентировочно, она равна 1/4 длинны волны.
Я использовал медь, толщиной 0,4 и 1 мм. Менее тонкие полоски — будут плохо держать форму, но в принципе и они работоспособны. Вместо меди, можно использовать и латунь . Резонаторы из альпака (вид латуни) тоже успешно работают. В самом простом варианте, резонаторы можно сделать из двух кусочков проволоки, диаметром 0,8-1,5 мм.

Помимо ВЧ-транзистора и меди, для изготовления генератора понадобится микросхема 4093 — это 4 элемента 2И-НЕ с триггерами Шмитта на входе. Её можно заменить на микросхему 4011 (4 элемента 2И-НЕ) или её российский аналог — К561ЛА7 . Также можно использовать другой генератор для модуляции, например, собранный на таймере 555 . А можно вообще исключить из схемы модулирующую часть и получить просто ВЧ-генератор.

В качестве ключевого элемента применен составной p-n-p транзистор TIP126 (можно использовать TIP125 или TIP127, они отличаются только максимально допустимым напряжением). По паспорту он выдерживает 5А, но очень сильно греется. Поэтому необходим радиатор для его охлаждения. В дальнейшем, я использовал P-канальные полевые транзисторы типа IRF4095 или P80PF55 .

Сборка устройства

Устройство может быть собрано как на печатной плате, так и навесным монтажом с соблюдением правил для ВЧ-монтажа. Топология и вид моей платы приведены ниже:

Эта плата рассчитана на транзистор типа MRF19125 или PTFA211801E . Для него прорезается отверстие в плате, соответствующее размеру истока (теплоотводящей пластины).
Одним из важных моментов сборки устройства является обеспечение теплоотвода от истока транзистора. Я применил различные радиаторы, подходящие по размеру. Для кратковременных экспериментов — таких радиаторов достаточно. Для долговременной работы — необходим радиатор достаточно большой площади или применение схемы обдува вентилятором.
Включение устройства без радиатора, чревато быстрым перегревом транзистора и выходом из строя этого дорогостоящего радиоэлемента.

Для экспериментов, мною были изготовлены несколько генераторов по разные транзисторы. Также я сделал фланцевые крепления полосковых резонаторов, чтобы можно было их менять без постоянного нагрева транзистора. Представленные ниже фотографии помогут вам разобраться в деталях монтажа.


















































Запуск устройства

Перед запуском генератора, необходимо еще раз проверить правильность его соединений, чтобы у вас не образовалась весьма не дешёвая кучка транзисторов с надписью «Сгорел».


Первый запуск, желательно производить с контролем потребляемого тока. Этот ток, можно ограничить до безопасного уровня использовав резистор на 2-10 Ом в цепи питания генератора (коллектор или сток модулирующего транзистора).
Работу генератора можно проверить различными приборами: поисковым приемником, сканером, частотомером или просто энергосберегающей лампой. ВЧ-излучение, мощностью более 3-5 Вт, заставляет её светиться.

ВЧ-токи легко нагревают некоторые материалы вступающие с ними в контакт в т. ч. и биологические ткани. Так, что будьте осторожны, можно получить термический ожог прикоснувшись к оголенным резонаторам (особенно при работе генераторов на мощных транзисторах). Даже небольшой генератор на транзисторе MRF284, при мощности всего около 2-х ватт — легко сжигает кожу рук, в чем вы можете убедиться на этом видео:

При некотором опыте и достаточной мощности генератора, на конце резонатора, можно зажечь т.н. «факел» — небольшой плазменный шарик, который будет подпитываться ВЧ-энергией генератора. Для этого достаточно просто поднести зажженную спичку к острию резонатора.

Т.н. «факел» на конце резонатора.

Помимо этого, можно зажечь ВЧ-разряд между резонаторами. В некоторых случаях, разряд напоминает крошечную шаровую молнию хаотично перемещающуюся по всей длине резонатора. Как это выглядит вы можете увидеть ниже. Несколько увеличивается потребляемый ток и во всем доме «гаснут» многие каналы эфирного телевидения))).

Применение устройства

Помимо этого, наш генератор может быть применен для изучения воздействия ВЧ-излучения на различные устройства, бытовую аудио и радиоаппаратуру с целью изучения их помехоустойчивости. Ну и конечно, с помощью данного генератора можно послать сигнал в космос, но это уже другая история…

P.S. Не следует путать этот ВЧ-автогенератор с различными EMP-jammers. Там генерируются импульсы высокого напряжения, а наше устройство генерирует излучение высокой частоты.

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор. Часть 1.

На этом занятии Школы начинающего радиолюбителя мы с вами продолжим наполнять нашу радиолабораторию необходимым измерительным инструментом. Сегодня мы начнем собирать функциональный генератор . Данный прибор необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, различных фильтров и множества других устройств. К примеру, после того как мы соберем этот генератор, мы сделаем маленький перерыв в ходе которого изготовим простое светомузыкальное устройство. Так вот, что бы правильно настроить частотные фильтры схемы, нам как раз очень пригодится этот прибор.

Почему данный прибор называется функциональный генератор, а не просто генератор (генератор низкой частоты, генератор высокой частоты). Прибор, который мы изготовим, генерирует на своих выходах сразу три различных сигнала: синусоидальный, прямоугольный и пилообразный. За основу конструкции мы возьмем схему С. Андреева, которая опубликована на сайте в разделе: Схемы – Генераторы .

Для начала нам необходимо внимательно изучить схему, понять принцип ее работы и собрать необходимые детали. Благодаря применению в схеме специализированной микросхемы ICL8038 которая как раз предназначена для построения функционального генератора, конструкция получается довольно-таки простой.

Конечно, цена изделия зависит и от производителя, и от возможностей магазина, и от многих других факторов, но в данном случае мы преследуем одну цель: найти необходимую радиодеталь, которая была бы приемлемого качества и главное – по карману. Вы наверное заметили, что цена микросхемы сильно зависит от ее маркировки (АС, ВС и СС). Чем дешевле микросхема, тем хуже ее характеристики. Я бы порекомендовал остановить свой выбор на микросхеме “ВС”. У нее характеристики не очень сильно отличаются от “АС”, но намного лучше чем у “СС”. Но в принципе, конечно, пойдет и эта микросхема.

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго вам дня уважаемые радиолюбители! Сегодня мы продолжим собирать наш функциональный генератор . Чтобы вам не скакать по страницам сайта, еще раз выкладываю принципиальную схему функционального генератора , сборкой которого мы и занимаемся:

А так же выкладываю даташит (техническое описание) микросхем ICL8038 и КР140УД806:

(151.5 KiB, 5,859 hits)

(130.7 KiB, 3,396 hits)

Я уже собрал необходимые детали для сборки генератора (часть у меня была – постоянные сопротивления и полярные конденсаторы, остальные куплены в магазине радиодеталей):

Самыми дорогими деталями оказались микросхема ICL8038 – 145 рублей и переключатели на 5 и 3 положения – 150 рублей. В общей сложности на эту схему придется потратить около 500 рублей. Как видно на фотографии, переключатель на пять положений – двухсекционный (односекционного не было), но это не страшно, лучше больше, чем меньше, тем более, что вторая секция нам возможно пригодится. Кстати, эти переключатели абсолютно одинаковые, а количество положений определяется специальным стопором, который можно установить на нужное число положений самому. На фотографии у меня два выходных разъема, хотя по идее их должно быть три: общий, 1:1 и 1:10 . Но можно поставить небольшой переключатель (один выход, два входа) и коммутировать нужный выход на один разъем. Кроме того хочу обратить внимание на постоянный резистор R6. Номинала в 7,72 МОм в линейке мегаомных сопротивлений нет, ближайший номинал – 7,5 МОм. Для того, чтобы получить нужный номинал придется использовать второй резистор на 220 кОм, соединив их последовательно.

Хочу обратить ваше внимание также на то, что сборкой и наладкой этой схемы собирать функциональный генератор мы не закончим. Для комфортной работы с генератором мы должны знать какая частота генерируется в данный момент работы, или нам бывает необходимо установить определенную частоту. Чтобы не использовать для этих целей дополнительные приборы, мы оснастим наш генератор простым частотомером.

Во второй части занятия мы с вами изучим очередной способ изготовления печатных плат – методом ЛУТ (лазерно-утюжный). Саму плату мы будем создавать в популярной радиолюбительской программе для создания печатных плат SPRINT LAYOUT .

Как работать с этой программой, я вам пока объяснять не буду. На следующем занятии, в видео файле, покажу как создать нашу печатную плату в этой программе, а также весь процесс изготовления платы методом ЛУТ.

Генератор — это устройство, которое преобразует один вид энергии в другой вид энергии. В нашем случае генератор частот — это устройство, которое преобразует энергию источника питания в периодические колебания различной формы. Или простыми словами — это электротехнический прибор, который может выдавать различные по форме периодические сигналы.

Описание генератора частот

На моем рабочем столе не так давно прямиком из Китая появился вот такой генератор частоты:

Сзади него находятся вот такие выводы:

Давайте же более подробно разберем для чего они нужны. Итак USB — это просто питание, которое подается на генератор частоты. Один конец шнура втыкаем в этот разъем


а другой в блок питания, который шел в комплекте


Также в комплекте шли высокочастотные


Втыкаем в розетку блок питания и кнопочкой POWER запускаем генератор частот


Буковкой «F» принято обозначать частоту , от англ. frequency — частота. Hz — это Герцы (Hertz) — показывает количество колебаний в секунду. Следовательно и приставки «кило, мега, гига» могут также присутствовать перед Герцами. Что это за приставки, думаю, стыдно не знать. Снизу FUNCtion — функция (гребаная алгебра…) , WAVE — волна, в данном случае, форма сигнала. Представленный в данной статье генератор может формировать три формы сигналов — это синусоида (SIN), прямоугольная (SQR) и треугольная (TRI) форма. Почему такие интересные названия форм сигналов вы поймете далее.

Панель управления генератора частоты выглядит следующим образом:


Здесь мы с вами видим кнопку включения POWER, квадратную желтую кнопку WAVE, с помощью которой мы выбираем форму сигнала: синусоида, прямоугольный или пилообразный. SEL — переключение между режимами задания частоты и формой сигнала. ОК — без комментариев. Верхняя крутилка предназначена для установки частоты, средняя для среза сигнала, и нижняя для изменения величины амплитуды сигнала. Итак, теперь обо всем по порядку.

Какие сигналы умеет выдавать генератор

Для пробы вбиваем частоту 50 Герц


Цепляем кабель генератора частоты к выходу OUT, а зажимы кабеля цепляем к щупам осциллографа.


На осциллограмме наблюдаем вот такую картину:



Чистейшая синусоида 50 Герц!

Переключаем форму волны на треугольную


Вуаля!


Знаете кто это?

Так… Причем здесь Спанчбоб? На английском языке он пишется как Spanch Bob Square Pants — что в переводе Спанч Боб Квадратные штаны. Square — (с англ. квадрат, прямоугольник). Чтобы не запутаться в генераторе частоты или в другой какой-либо технике, вспомните СпанчБоба. SQR — прямоугольная форма сигнала.


А вот собственно и она на осциллограмме


Крутилкой OFFSET можно срезать форму сигнала сверху, снизу и сверху и снизу одновременно.



Скважность и коэффициент заполнения

Есть в электронике такой параметр, как скважность . Это параметр применяется к прямоугольной форме сигналов.

где S — скважность

T — период импульса, с

t — длительность импульса, с


Величина D (Duty) , обратная величине S, называется коэффициентом заполнения

Иллюстрация сигналов с различным коэффициентом заполнения

Вот так выглядит сигнал с коэффициентом заполнения 50%. У этого сигнала длительность импульса ровно в два раза меньше его периода, следовательно S=2, а D=50%. Такой сигнал прямоугольной формы называют


Меняем коэффициент заполнения D на 20%



то же самое, но на 80%



Выход TTL генератора частоты

Также в этом генераторе есть такие примочки, как выход TTL . TTL по-русски звучит, как транзисторно-транзисторная логика. Короче говоря — этот выход предназначен для тактирования импульсов на логические микросхемы. Еще более понятным языком — задает рабочую частоту для различных микросхем, чтобы они работали и выполняли свои функции. Здесь выходит прямоугольная форма сигнала амплитудой более 3 Вольт


и частотой в 1 килогерц.


Режим частотомера и счетчика импульсов

Теперь о примочках, которые китайский производители затолкали в этот генератор. Есть один интересный вывод — Ext.IN. Думаю, нетрудно догадаться. что IN — это вход. В этом генераторе частоты встроен частотомер и счетчик периодов сигнала. Для этих функций как раз и используется вывод Ext IN.


Я хочу измерить частоту электрического тока в розетке. Если вы помните, там переменный ток, который имеет частоту 50 Герц. Так ли это? Сейчас узнаем. Напряжение для входа Ext.IN должно быть от 0,5 и до 20 Вольт. В розетке же 220 Вольт, чтобы его убавить, используем . На выходе я получил напряжение в 2 Вольта. Чтобы вы увидели, что есть напряжение на вторичной обмотке трансформатора, я туда поставил светодиод. Цепляемся за выводы вторичной обмотки крокодильчиками нашего генератора частоты


И начинаем производить замеры. Опа на! Ровно 50 герц;-).



Характеристики генератора

Вот характеристики генератора частоты, кому интересно:

1. Signal Output function

waveforms Sine wave, Square wave and Triangle wave

amplitude ≥10Vp-p(signal output, no load)

impedance 50Ω±10%(signal output)

DC offset ±2.5V(no load)

Display LCD160

Resolution 0.01Hz

Frequency Stability ±1×10 -6

Frequency accuracy ±5×10 -6

Sine wave distortion ≤0.8% (reference frequency is 1kHz)

Trinagle linearity ≥98% (0.01Hz~10kHz)

Rise and fall time of square wave ≤100ns

Square Wave Duty range 1%~99%

2. TTL Output function

Frequency range 0.01Hz ~ 2MHz

Amplitude >3Vp-p

Fan Out >20 TTL loads

3. COUNTER function

Counter Range 0-4294967295

Frequency Meter Range 1Hz~60MHz

Input Voltage Range 0.5Vp-p~20Vp-p

Storage and transferred: 10 set of parameters with storage and recall functions.

Заключение

В заключении хотелось бы сказать пару слов. Как же правильно выбрать генератор частоты? Здесь, конечно, все зависит от функционала, а точнее от того, какую максимальную частоту может выдать генератор. Чем большую частоту может выдавать генератор, тем он дороже. Начинающему электронщику, думаю, 2 Мегагерца сигналов синуса, треугольного и прямоугольного хватит по самое не балуйся, да еще и частотомер+счетчик.

Стоит ли его брать? Думаю, нет. Лучше взять какой-нибудь один, но подороже. У меня сейчас вот такой генератор частоты


Где купить генератор частот

Я бы посоветовал Алиэкспресс. Здесь действительно можно подобрать приличный генератор.

Начиная от простых дешевых


Заканчивая полупрофессиональными


Выбирайте на ваш вкус и цвет!

Высокочастотные генераторы предназначены для получе­ния электрических колебаний в диапазоне частот от десятков кГц до десятков и даже сотен МГц. Такие генераторы, как правило, вы­полняют с использованием LC-колебательных контуров или квар­цевых резонаторов, являющихся частотозадающими элементами. Принципиально схемы от этого существенно не изменяются, по­этому ниже будут рассмотрены LC-генераторы высокой частоты. Отметим, что в случае необходимости колебательные контуры в некоторых схемах генераторов (см., например, рис. 12.4, 12.5) мо­гут быть без проблем заменены кварцевыми резонаторами.

(рис. 12.1, 12.2) выполнены по традиционной и хорошо зарекомендовавшей себя на практи­ке схеме «индуктивной трехточки». Они различаются наличием эмиттерной RC-цепочки, задающей режим работы транзистора (рис. 12.2) по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности (рис. 12.1, 12.2) делают отвод (обычно от ее 1/3…1/5 части, считая от заземленного вы­вода). Нестабильность работы генераторов высокой частоты на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации «плавает». Для ослабления влияния транзистора на рабочую частоту генерации следует максимально ослабить связь коле­бательного контура с транзистором, до минимума уменьшив пе­реходные емкости. Кроме того, на частоту генерации заметно нпияет и изменение сопротивления нагрузки. Поэтому крайне необходимо между генератором и сопротивлением нагрузки иключить эмиттерный (истоковый) повторитель.

Для питания генераторов следует использовать стабильные источники питания с малыми пульсациями напряжения.

Генераторы, выполненные на полевых транзисторах (рис. 12.3), обладают лучшими характеристиками.

Собранные по схеме «ем­костной трехточки» на биполярном и полевом транзисторах, показаны на рис. 12.4 и 12.5. Принципиально по своим харак­теристикам схемы «индуктивной» и «емкостной» трехточек не отличаются, однако в схеме «емкостной трехточки» не нужно делать лишний вывод у катушки индуктивности.

Во многих схемах генераторов (рис. 12.1 - 12.5 и другие схемы) выходной сигнал может сниматься непосредственно с ко­лебательного контура через конденсатор небольшой емкости или через согласующую катушку индуктивной связи, а также с неза- земленных по переменному току электродов активного элемента (транзистора). При этом следует учитывать, что дополнительная нагрузка колебательного контура меняет его характеристики и ра­бочую частоту. Иногда это свойство используют «во благо» - для целей измерения различных физико-химических величин, контро­ля технологических параметров.

На рис. 12.6 показана схема несколько видоизмененного ва­рианта ВЧ генератора - «емкостной трехточки». Глубину положи­тельной обратной связи и оптимальные условия для возбуждения генератора подбирают с помощью емкостных элементов схемы.

Схема генератора, показанная на рис. 12.7, работоспособ­на в широком диапазоне значений индуктивности катушки коле­бательного контура (от 200 мкГч до 2 Гн) [Р 7/90-68]. Такой генератор можно использовать в качестве широкодиапазонного высокочастотного генератора сигналов или в качестве измери­тельного преобразователя электрических и неэлектрических ве­личин в частоту, а также в схеме измерения индуктивностей.

Генераторы на активных элементах с N-образной ВАХ (тун­нельные диоды, лямбда-диоды и их аналоги) содержат обычно

источник тока, активный элемент и частотозадающий элемент (LC-контур) с параллельным или последовательным включением. На рис. 12.8 показана схема ВЧ генератора на элементе с лям- бдаобразной вольт-амперной характеристикой. Управление его частотой осуществляется за счет изменения динамической емко­сти транзисторов при изменении протекающего через них тока.

Светодиод HL1 стабилизирует рабочую точку и индицирует вклю­ченное состояние генератора.

Генератор на аналоге лямбда-диода, выполненный на поле­вых транзисторах, и со стабилизацией рабочей точки аналогом стабилитрона - светодиодом, показан на рис. 12.9. Устройство работает до частоты 1 МГц и выше при использовании указанных на схеме транзисторов.

Ма рис. 12.10 в порядке сопоставления схем по степени их сложности приведена практическая схема ВЧ генератора на туннельном диоде. В качестве полупроводникового низко­вольтного стабилизатора напряжения использован прямосме- щенный переход высокочастотного германиевого диода. Этот генератор потенциально способен работать в области наибо­лее высоких частот - до нескольких ГГц.

Высокочастотный генератор, по схеме очень напоминаю­щий рис. 12.7, но выполненный с использованием полевого транзистора, показан на рис. 12.11 [Рл 7/97-34].

Прототипом RC-генератора, показанного на рис. 11.18 яв­ляется схема генератора на рис. 12.12 .

нот генератор отличает высокая стабильность частоты, способ­ность работать в широком диапазоне изменения параметров частотозадающих элементов. Для снижения влияния нагрузки на рабочую частоту генератора в схему введен дополнительный каскад - эмиттерный повторитель, выполненный на биполяр­ном транзисторе VT3. Генератор способен работать до частот свыше 150 МГц.

Из числа всевозможных схем генераторов особо следует выделить генераторы с ударным возбуждением. Их работа ос­нована на периодическом возбуждении колебательного конту­ра (либо иного резонирующего элемента) мощным коротким импульсом тока. В результате «электронного удара» в возбуж­денном таким образом колебательном контуре возникают по­степенно затухающие по амплитуде периодические колебания синусоидальной формы. Затухание колебаний по амплитуде обусловлено необратимыми потерями энергии в колебатель­ном контуре. Скорость затухания колебаний определяется добротностью (качеством) колебательного контура. Выходной высокочастотный сигнал будет стабилен по амплитуде, если импульсы возбуждения следуют с высокой частотой. Этот тип генераторов является наиболее древним в ряду рассматривае­мых и известен с XIX века.

Практическая схема генератора высокочастотных колеба­ний ударного возбуждения показана на рис. 12.13 [Р 9/76-52; 3/77-53]. Импульсы ударного возбуждения подаются на коле­бательный контур L1C1 через диод VD1 от низкочастотного генератора, например, мультивибратора, или иного генератора прямоугольных импульсов (ГПИ), рассмотренных ранее в гла­вах 7 и 8. Большим преимуществом генераторов ударного возбуждения является то, что они работают с использованием колебательных контуров практически любого вида и любой резонансной частоты.

Еще один вид генераторов - генераторы шума, схемы ко­торых показаны на рис. 12.14 и 12.15.

Такие генераторы широко используют для настройки раз­личных радиоэлектронных схем. Генерируемые такими устрой­ствами сигналы занимают исключительно широкую полосу частот - от единиц Гц до сотен МГц. Для генерации шума используют обратносмещенные переходы полупроводниковых приборов, работающих в граничных условиях лавинного пробоя. Дня этого могут быть использованы переходы транзисторов (рис. 12.14) [Рл 2/98-37] или стабилитроны (рис. 12.15) [Р 1/69-37]. Чтобы настроить режим, при котором напряжение генерируемых шумов максимально, регулируют рабочий ток через активный нтемент (рис. 12.15).

Отметим, что для генерации шума можно использовать и резисторы, совмещенные с многокаскадными усилителями низ­кой частоты, сверхрегенеративные приемники и др. элементы. Для получения максимальной амплитуды шумового напряжения необходим, как правило, индивидуальный подбор наиболее шу­мящего элемента.

Для того чтобы создать узкополосные генераторы шума, на выходе схемы генератора может быть включен LC- или RC-фильтр.

Основное предназначение высокочастотного генератора заключается в том, что он создает колебания электрического поля. Диапазон этих колебаний имеет довольно широкие границы: от нескольких десятков килогерц и до сотен мегагерц.

Общее описание устройства ВЧ

Большинством обычных людей этот прибор используется для остановки счетчика. Высокочастотный генератор действительно способен останавливать работу такой техники, создавая колебания. Кроме того, этот прибор можно также использовать в качестве питания для обычных бытовых устройств. Если говорить о мощностях, то выходное напряжение достигает 220 А, а мощность - 1 кВт. Также возможна замена некоторых элементов на более мощные. Если это сделать, то выходные характеристики высокочастотного генератора повысятся, и с его помощью станет возможно питать большее количество агрегатов или же несколько, но уже более мощных. Подключение же самого ВЧ осуществляется к обычной бытовой сети. Здесь важно отметить, что схема электрических проводов довольно проста, и изменять ее как-либо нет смысла. К тому же нет необходимости в использовании системы заземления для этого прибора. При подключении таких колебательных агрегатов в сеть они не полностью останавливают работу счетчика. Агрегат продолжает работать, но при этом ведется учет лишь 25 % от реального расхода электроэнергии.

Действие прибора

Если разобраться более подробно с работой высокочастотного генератора, то остановка техники происходит из-за того, что в схеме прибора используется конденсатор. Подключение осуществляется именно к этой детали, которая имеет заряд, полностью совпадающий с синусоидой напряжения, протекающего в сети. Осуществление заряда происходит посредством импульсов с высокой частотой. Таким образом, получается, что ток, который потребитель расходует из своей домашней сети, становится высокочастотным импульсом. Обычные же электронные счетчики, установленные в домах, характеризуются отсутствием чувствительности к такого рода колебаниям. Это означает, что учитывать расход тока импульсной формы агрегат будет с отрицательной погрешностью.

Описание схемы

Схема высокочастотного генератора характеризуется наличием определенных ключевых элементов. К ним относятся: выпрямитель, емкость, транзистор. Далее, если говорить о подключении конденсатора, то он последовательно включается в схему с выпрямителем. Это необходимо для того, чтобы во время того, как выпрямитель работает на транзистор, конденсатор мог заряжаться до того размера напряжения, которое имеется в сети.

Чаще всего пределом зарядки конденсатора в высокочастотном генераторе становится 2 кГц. Если говорить о напряжении, которое в данный момент присутствует на нагрузке и емкости устройства, то оно приближается к синусу на 220 В. Для того чтобы ограничить ток, протекающий через транзистор в то время, как заряжается емкость, в схеме имеется резистор, который подключается с каскадом ключа, используя последовательное соединение.

Особенности выполнения ВЧ

Генератор выполняется полностью на логических элементах. Он производит колебания или импульсы с частотой 2 кГц, а также с амплитудой в 5 Вольт. Имеется также такая характеристика, как сигнальная частота. Значение этого параметра определяется элементами С2 и R7. В стандартных схемах обозначения используют именно такой формат подписи. Свойства, которые дают эти элементы, могут применяться для того, чтобы настроить максимальную погрешность учета расхода энергии. За создание импульсов отвечают такие элементы, как Т2 и Т3 - транзисторы. Вместе их называют создателем импульсов. Эта деталь отвечает также за правильную работу транзистора Т1.

Такие устройства, как выпрямитель, трансформатор и другие используются в качестве небольшого блока питания. Основная задача - это поставка энергии для работы микросхемы с другими элементами. Такие небольшие блоки питания обычно рассчитаны на 36 В.

Высокочастотный генератор сигналов Г4-151

Основное предназначение такого генератора заключается в настройке, проверке, регулировке и испытаниях радиотехнических устройств. При помощи данного прибора можно обеспечить измерение амплитудно-частотной характеристики, чувствительности, избирательности и т.д. Кроме этого, использовать данную аппаратуру можно и в качестве источника сигнала, который работает с разными способами модуляции колебаний. Это может быть амплитудная, частотная или импульсная модуляция. Также возможно создание немодулированных колебаний. Чаще всего такое оборудование используют в поверочных органах, в мастерских по ремонту оборудования, в цехах или лабораториях.

Вывод информации у данного высокочастотного - это обычный цифровой код. Кроме этого, для удобства управления имеются аналоговые входы, позволяющие дистанционно регулировать все параметры аппарата.

Собственноручная сборка

Так как собирать реальную схему высокочастотного может быть трудно, имеется несколько упрощенный вариант сборки. В таком случае вместо транзистора в схеме будет использоваться элемент с отрицательным сопротивлением. Еще такие элементы довольно часто называют усилительными. Если говорить совсем простыми словами, то ток на выходе таких приборов всегда больше, чем ток на их входе.

К входу такого прибора подключается колебательный контур. Далее очень важно с выхода этого же усилителя через обратную связь необходимо подключить его к этому же колебательному контуру. Соединив схему таким образом, получите следующий результат. На вход поступает ток определенного значения, проходя через усилительный элемент, он увеличивается, чем подпитывает контурный конденсатор. При помощи обратной связи уже усиленный ток возвращается снова на вход в схему, где опять усиливается. Такой круговой процесс происходит постоянно. Именно он и вызывает незатухающие колебания внутри генератора.

Ламповый ВЧ

Одна из разновидностей ге нераторов сигналов высокочастотных - это ламповые устройства. Такие приборы используют для того, чтобы получать плазму с нужными параметрами. Для этого нужно подвести определенный разряд к мощности устройства. У таких приборов ключевыми элементами являются эмиттеры, работа которых основывается на принципе подведения мощности.

Еще одним важным элементом для работы ламповых ВЧ стали усилители мощности. Эти детали, установленные на лампах, используются для того, чтобы преобразовать постоянный ток в переменный. Естественно, что эксплуатация лампового генератора невозможна без самой лампы. Использовать можно различные элементы. Довольно распространенным стал тетрод ГУ-92А. Данная деталь является электронной лампой, для работы которой используется четыре элемента: анод, катод, экранирующая и управляющая сетки.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png