Сейчас мы привыкли к компактным электронным устройствам и сверхтонким ноутбукам. А чуть больше ста лет назад появился девайс, который сделал это реальностью и произвел настоящую революцию в развитии электроники. Речь идет о радиолампе.

Ламповое вступление

В схемотехнике раньше повсеместно использовались лампы, первые электронные приборы были построены именно с их использованием. Золотое время радиоламп пришлось на первую половину 20 века. Для наших дедов и прадедов гораздо привычнее были гигантские ЭВМ, занимавшие целое помещение и греющиеся как адское пекло. На такой машине сериальчик не посмотришь.

Потом еще было время, когда советские микросхемы стали самыми большими в мире. Но это уже другая история, которая началась после появления полупроводниковых приборов. Как вы поняли, эта статья о работе электронной лампы и ее современном использовании.

Вакуумные приборы

Вакуум – это отсутствие материи. Точнее, практически полное ее отсутствие. В физике разделяют высокий, средний и низкий вакуум. Понятно, что электрического тока в вакууме быть не может, так как ток – это направленное движение (частиц) носителей заряда, которым в вакууме взяться неоткуда.

Но так уж и неоткуда? Металлы при нагревании испускают электроны. Это так называемая термоэлектронная эмиссия. На ней и основана работа электронных вакуумных приборов.

Термоэлектронную эмиссию открыл Томас Эдисон. Точнее ученый выяснил, что при нагреве нити и наличия в вакуумной колбе второго электрода вакуум проводит ток. Тогда Эдисон не в полной мере оценил значение своего открытия, но на всякий случай запатентовал его. Вывод: в любой непонятной ситуации патентуйте!

Вакуумные приборы – герметично запаянные баллоны с электродами внутри. Баллоны делают из стекла, металла или керамики, предварительно откачав из них воздух.

Помимо электронных ламп есть следующие вакуумные приборы:

  • приборы СВЧ, магнетроны, клистроны;
  • кинескопы, электронно-лучевые трубки;
  • рентгеновские трубки.

Принцип работы электронной лампы

Электронная лампа – это электронный вакуумный прибор, который работает за счет управления интенсивностью потока электронов между электродами.

Простейший тип лампы – диод. Вместо того чтобы читать определения, лучше посмотрим на нее.

В любой лампе есть катод, с которого электроны вылетают, и анод, на который они летят. Если на катод подать «минус», а на анод «плюс», электроны, вылетевшие из раскаленного катода, начнут двигаться к аноду. В лампе потечет ток.

Кстати! Если вам нужно произвести расчет усилителя на диодах, для наших читателей сейчас действует скидка 10% на

Диод обладает односторонней проводимостью. Это значит, что если на катод подать плюс, а на анод минус, тока в цепи уже не будет.

Помимо этих двух электродов в лампах могут быть и другие.

Все названия электронных ламп связаны с количеством электродов. Диод – два, триод – три, тетрод – четыре, пентод – пять и т.д.

Возьмем триод. Это диод, в который добавлен дополнительный электрод - управляющая сетка. Такая лампа с тремя электродами уже может работать как усилитель тока.

Если на сетке есть небольшое отрицательное напряжение, она будет задерживать часть электронов, летящих к аноду, и ток уменьшится. При большом отрицательном напряжении сетка «запрет» лампу, и ток в ней прекратится. А если подать на сетку положительное напряжение, анодный ток будет усиливаться.

Небольшое изменение напряжения на сетке, которая устанавливается рядом с катодом, существенно влияет на ток между катодом и анодом. На этом и строится принцип усиления.

Применение электронных ламп

Почти везде лампу вытеснил полупроводниковый транзистор. Однако в некоторых отраслях лампы заняли свое место и остаются незаменимыми.

Например, в космосе. Ламповое оборудование выдерживает больший диапазон температур и радиационный фон, поэтому используется в производстве космических аппаратов.

Лампы с воздушным или водяным охлаждением также находят применение в мощных радиопередатчиках.

Конечно, сложно представить современное музыкальное оборудование без ламповых схем.

Ламповый звук: правда или вымысел?

Усилители низкой частоты или просто усилители звука – самое известное современное применение радиоламп, которое к тому же вызывает много споров.

Доходит вплоть до «холиваров» между адептами лампового и транзисторного звука. Ламповый звук, как говорят, более «душевный» и «мягкий», его приятно слушать. В то время как транзисторный звук – «бездушный» и «холодный».

Ничего не бывает просто так, и вряд ли такие споры и мнения возникали на пустом месте. В свое время вопросом, действительно ли ламповый звук приятнее для слуха, заинтересовались ученые. Было проведено довольно много исследований на тему отличий лампы от транзистора.

По данным одного из них, ламповые усилители добавляют в сигнал четные гармоники, которые субъективно воспринимаются людьми как «теплые», «приятные» и «уютные». Правда, сколько людей, столько и мнений, поэтому споры до сих пор ведутся.

Часто спор – пустая трата времени. А вот студенческий сервис , наоборот, поможет сохранить ценные человеко-часы. Обращайтесь к нашим специалистам за качественной помощью в любой области знаний.

Поколения компьютеров

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов; для отдельной же машины вопрос о ее принадлежности к тому или иному поколению решается достаточно просто.

Появление ЭВМ или компьютеров – одна из существенных примет современной научно-технической революции. Широкое распространение компьютеров привело к тому, что все большее число людей стало знакомиться с основами вычислительной техники, а программирование постепенно превратилось в элемент культуры. Первые электронные компьютеры появились в первой половине XX века. Они могли делать значительно больше механических калькуляторов, которые лишь складывали, вычитали и умножали. Это были электронные машины, способные решать сложные задачи.

Кроме того, они имели две отличительные особенности, которыми предыдущие машины не обладали:

Одна из них состояла в том, что они могли выполнять определенную последовательность операций по заранее заданной программе или последовательно решать задачи разных типов.

Способность хранить информацию в специальной памяти.

Поколение первое.

Компьютеры на электронных лампах.

Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году.

Вскоре Ли де Форрест изобретает вакуумный триод - лампу с тремя электродами, затем появляется газонаполненная электронная лампа - тиратрон, пятиэлектродная лампа - пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер, изобретенный М. А. Бонч-Бруевичем (1918) и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры. Подробнее об электронной лампе здесь.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.



Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штеккера с нужным гнездом.

Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Поколение второе.

Уральский технический институт связи и информатики (филиал) федерального государственного образовательного бюджетного учреждения высшего профессионального образования "Сибирский государственный университет телекоммуникаций и информатики"

(УрТИСИ ФГОБУ ВПО "СибГУТИ") в г. Екатеринбург

РЕФЕРАТ НА ТЕМУ:

ЭЛЕКТРОННЫЕ ЛАМПЫ И ИХ РАБОТА. УСИЛЕНИЕ СИГНАЛОВ ЗВУКОВОЙ ЧАСТОТЫ С ПОМОЩЬЮ РАДИОЛАМП

Выполнил: Блинков Евгений Михайлович

Студент 1-го курса ВПО Группы ВЕ-31б .

Екатеринбург 2014

ГЛАВА-1. ЭЛЕКТРОННЫЕ ЛАМПЫ И ИХ РАБОТА..........................................................................................

ИСТОРИЯ СОЗДАНИЯ ЭЛЕКТРОВАКУУМНОЙ РАДИОЛАМПЫ..............................................................

УСТРОЙСТВО ЭЛЕКТРОННОЙ ЛАМПЫ....................................................................................................

КАК РАБОТАЕТ ДИОД...............................................................................................................................

КАК РАБОТАЕТ ТРИОД..............................................................................................................................

МНОГОЭЛЕКТРОДПЫЕ ЛАМПЫ............................................................................................................

КАТОДЫ РАДИОЛАМП И ИХ ПИТАНИЕ.................................................................................................

КОНСТРУКЦИИ, МАРКИРОВКА И ЦОКОЛЕВКА РАДИОЛАМП.............................................................

АВТОМАТИЧЕСКОЕ СМЕЩЕНИЕ............................................................................................................

ГЛАВА-2. УСИЛЕНИЕ СИГНАЛОВ ЗВУКОВОЙ ЧАСТОТЫ С ПОМОЩЬЮ РАДИОЛАМП. ЛАМПОВЫЙ

УСИЛИТЕЛЬ. СЕКРЕТЫ ЛАМПОВОГО ЗВУКА.................................................................................................

СЕКРЕТЫ ЛАМПОВОГО ЗВУКА...................................................................................................................

ПРИНЦИП РАБОТЫ ЛАМПОВОГО УСИЛИТЕЛЯ........................................................................................

ПРЕДИСЛОВИЕ ........................................................................................................................................

ОДНОТАКТНЫЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ ...........................................................................................

ОДНОТАКТНЫЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ НА ТРИОД-ПЕНТОДЕ 6Ф5П..............................................

Описание конструкции и принцип работы...............................................................................

Сборка и монтаж.........................................................................................................................

Налаживание усилителя.............................................................................................................

Допустимые отклонения параметров и номиналов от нормы...............................................

ДВУХТАКТНЫЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ.............................................................................................

Принцип работы двухтактной схемы. .......................................................................................

Простой ламповый двухтактный усилитель. ............................................................................

СПИСОК ЛИТЕРАТУРЫ................................................................................................................................

ГЛАВА-1. ЭЛЕКТРОННЫЕ ЛАМПЫ И ИХ РАБОТА.

В свое время электронная лампа совершила в радиотехнике подлинную революцию: коренным образом изменила конструкции передающих и приемных устройств, увеличила дальность действия их, позволила радиотехнике сделать гигантский шаг вперед и занять почетное место буквально во всех областях науки и техники, производства, в нашей повседневной жизни. Сейчас, когда в радиоэлектронные устройства все более внедряются полупроводниковые приборы, электронные лампы уходят в историю, но они по-прежнему остаются прародителями всех наших современных приборов. Ведь не стоит забывать, что первая в мире ЭВМ (ЭНИАК 1946г.) имела в основе своей конструкции электронные лампы. А что сейчас? Сейчас их заменили полупроводниковые элементы, которые имеют в миллиарды раз меньшие размеры, и как следствие производительность таких машин существенно возросла, а размеры уменьшились. Я выбрал данную тему, чтобы познакомиться с этими, поистине, «ветеранами» радиотехники.

ИСТОРИЯ СОЗДАНИЯ ЭЛЕКТРОВАКУУМНОЙ РАДИОЛАМПЫ

Усилительная радиолампа была изобретена в 1906 году американцем Ли Де Форестом. С началом серийного выпуска радиоламп стали возможны радиовещание и телефонная связь на большие расстояния. В 20-х годах появляются первые радиоприемники на лампах. Затем усилители на лампах начинают использоваться в электропроигрывателях. Расцвет ламповой техники пришелся на 50-е годы. В это время радиоприемники, проигрыватели и телевизоры превратились в по-настоящему массовые продукты. Но тогда же, в 50-х годах, у радиолампы появился соперник: началось производство полупроводниковых усилительных устройств - транзисторов. Поначалу транзисторы использовались только в переносной технике, где были важны такие их преимущества, как малые размеры и скромные потребности в электроэнергии. В 70-х годах в аппаратуру начинают внедряться интегральные микросхемы. В одной микросхеме размером с почтовую марку помещались сначала десятки, потом сотни (а теперь уже и миллионы) транзисторов. Стало легко реализовывать функции, которые для ламповой техники неприемлемы. С появлением микросхем в аудиовидеоаппаратуре начали использоваться цифровые технологии. Однако вплоть до середины 70-х годов ламповая аппаратура превосходила устройства на полупроводниках как минимум по двум параметрам.

Во-первых, максимальная выходная мощность у ламповых усилителей была выше. Вовторых, они вносили меньше искажений в сигнал. Вот почему до середины 70-х годов высококачественная аудиоаппаратура делалась исключительно на лампах.Кроме того,

выпускалась комбинированная аппаратура, где большинство узлов выполнено на транзисторах, но там, где были необходимы большая мощность и большое напряжение, использовались лампы. У транзисторов выше коэффициент полезного действия. Это значит, что при равной потребляемой мощности у транзисторного усилителя выходная мощность выше, чем у лампового. В итоге транзисторная аппаратура обогнала по выходной мощности ламповую. Последним оплотом ламповой техники были телевизоры. Ламповые телевизоры выпускались вплоть до конца 80-х годов. Замену ламп на транзисторы и микросхемы подстегнуло цветное телевидение. Уже столь сложное устройство, как цветной телевизор, будучи выполненным на лампах, оказывается недостаточно надежным и потребляет очень много электроэнергии. Но в индустрии звукозаписи в начале 80-х годов произошли события, которые заложили основу для триумфального возвращения радиолампы.

В начале 80-х годов появился CD, который стал первым массовым цифровым носителем для записи звука. Сначала продвижение CD было четко ориентировано на людей, серьезно увлекающихся музыкой. И здесь не обошлось без некоторых накладок. Меломаны покупали CD-проигрыватели, подключали к ним имевшиеся транзисторные усилители, изначально предназначенные для работы с проигрывателями для «винила» и... испытывали разочарование. Сигнал, выходящий из винилового проигрывателя, гладкий, его динамический диапазон (то есть соотношение между мощностями самого громкого и самого тихого звуков) был сужен при записи, чтобы поместиться в дорожку пластинки. Транзисторный усилитель хорошо справлялся с таким сигналом. А что получалось на выходе CD-проигрывателя? Динамический диапазон широкий, в сигнале много резких перепадов. Работая с таким сигналом, транзисторный усилитель вносил в него значительные искажения. И вот в какой-то светлой голове возникла мысль, а не подсоединить ли CD-проигрыватель к ламповому усилителю? На первый взгляд такое решение выглядело дикостью - подключить ультрасовременное устройство к аппарату, выполненному из компонентов, признанных морально устаревшими. Но результаты превзошли все ожидания - получилось чистое звучание, CD смог раскрыть свои богатые возможности. Вопреки расхожему мнению, именно появлению CD, а не ностальгической моде на «винил», и обязана радиолампа своим триумфальным возвращением. В 80-е годы американские меломаны в основной своей массе перешли с «винила» на CD. Соответственно возник большой спрос на ламповые усилители. Но к тому моменту производство радиоламп для широкого применения в США уже было прекращено. Где можно было найти радиолампы? Оказывается, в СССР и Китае. Неповоротливая советская электронная промышленность продолжала производить радиолампы в большом количестве. Что касается Китая, то в 80-е годы он еще плелся в хвосте прогресса в электронной промышленности, и там радиолампы тоже производились. Было создано американо-советское предприятие Sovtek, которое начало поставлять советские радиолампы в США. И до сих пор этот бренд занимает серьезные позиции на американском рынке радиоламп. Сейчас аппаратуру на радиолампах Sovtek производит, например, американская компания Conrad-Johnson. Кроме Sovtek в продукции американских фирм широко используются радиолампы знаменитого санкт-петербургского завода «Светлана». Причем выбор на продукцию предприятия из бывшего СССР пал не из-за цены, а потому, что оно обеспечивает высокое качество звука. Существуют и отечественные производители ламповых усилителей. Главным образом это небольшие фирмы, которые выпускают аппаратуру мелкими партиями или по индивидуальным заказам.

УСТРОЙСТВО ЭЛЕКТРОННОЙ ЛАМПЫ

Любая радиолампа представляет собой стальной, стеклянный или керамический баллон, внутри которого на металлических стойках укреплены электроды. Пространство в баллоне сильно разрежено, т. е. там почти нет воздуха. Его откачивают через небольшой отросток, имеющийся в нижней или верхней части баллона. Сильное разрежение воздуха внутри баллона - вакуум - непременное условие для работы радиолампы.

В каждой радиолампе обязательно есть катод - отрицательный электрод, являющийся источником электронов в лампе, и анод - положительный электрод. Катодом может быть вольфрамовый волосок, подобный нити накала электролампочки, или металлический цилиндрик, подогреваемый нитью накала, а анодом - металлическая пластинка, а чаще коробочка, имеющая форму цилиндра или параллелепипеда. Вольфрамовую нить, выполняющую роль катода, называют также нитью накала.

На схемах баллон лампы обозначают в виде окружности, катод - дужкой, вписанной в окружность, анод - короткой чертой, расположенной над катодом, а их выводы - линиями,

выходящими за пределы окружности. Радиолампы, содержащие только катод и анод, называют двух электродными или диодами.

На Рис-1 показано схематическое обозначение двухэлектродной лампы - диода. Через специальную колодку с гнездами - ламповую панельку - радиолампа соединяются с другими элементами радиотехнического устройства.

В большинстве радиоламп между катодом и анодом имеются спирали из тонкой проволоки, называемые сетками. Они окружают катод и, не соприкасаясь, располагаются на разных

расстояниях от него. В зависимости от назначения число сеток в лампе может быть от одной до пяти. По общему числу электродов, включая катод и анод, различают лампы трехэлектродные, четырехэлектродные, пятиэлектродные и т. д. Соответственно их называют триодами (с одной сеткой), тетродами (с двумя сетками), пентодами (с тремя сетками).

Графическое обозначение одной из таких ламп - триода - показано на Рис-2. Эта лампа отличается от диодов наличием в ней спирали-сетки. На схемах сетки обозначают штриховыми линиями, расположенными между катодом и анодом.

Триоды, тетроды и пентоды - универсальные радиолампы. Их применяют для усиления переменных и постоянных токов и напряжений, в качестве детекторов, для генерирования

электрических колебаний разных частот и многих других целей. Принцип работы радиолампы основан на направленном движении в ней электронов. «Поставщиком» же электронов внутри лампы является катод, нагретый до Температуры 800-2000°С.

В чем сущность этого явления?

Если кастрюлю, наполненную водой, поставить на огонь, то по мере нагревания частицы воды начнут двигаться все быстрее и быстрее. Наконец, вода закипит. При этом частицы воды будут двигаться с настолько большими скоростями, что некоторые из них оторвутся от поверхности воды и покинут ее - вода начнет испаряться. Нечто подобное наблюдается и в электронной лампе. Свободные электроны, содержащиеся в раскаленном металле катода, движутся с огромными скоростями. При этом некоторые из них покидают катод, образуя вокруг него электронное «облако». Это явление испускания, или излучения, катодом электронов называют термоэлектронной эмиссией . Чем сильнее раскален катод, тем больше электронов он испускает, тем гуще электронное облако. Когда говорят, что «лампа потеряла эмиссию», это значит, что с поверхности ее катода свободные электроны по какойто причине вылетают в очень малом количестве. Лампа с потерянной эмиссией работать не будет.

Однако чтобы электроны могли вырываться из катода, надо не только нагреть его, но и освободить окружающее пространство от воздуха. Если этого не сделать, вылетающие электроны потеряют скорость, «завязнут» в молекулах воздуха. Поэтому-то в электронной лампе и создают вакуум. Откачивать воздух необходимо еще и потому, что при высокой температуре катод поглощает кислород воздуха, окисляется и быстро разрушается. К этому нужно добавить, что на поверхность катода наносят слой окислов бария, стронция и кальция, обладающий способностью излучать электроны при сравнительно низкой температуре нагрева.

КАК РАБОТАЕТ ДИОД

Самой простой радиолампой является вакуумный диод. (Рис-3. )

Чтобы разогреть нить накала, подключим к ее выводам источник накального напряжения U н . Образуется цепь накала. Вторую батареюU соединим отрицательным полюсом с одним с катодом, а положительным - с анодом. Образуется вторая цепь - анодная, состоящая из участка катод - анод, источника анодного напряженияU и соединительных проводников. Если включить в нее миллиамперметр, стрелка прибора укажет на наличие тока в этой цепи.

Естественно, может возникнуть вопрос: почему в анодной цепи течет ток? Ведь между катодом и анодом нет электрического соединения.

Отвечаю: подключив источник анодного напряженияU , мы тем самым создали на аноде положительный заряд, а на катоде - отрицательный. Между ними возникло электрическое поле, под действием которого электроны, испускаемые катодом, устремляются к положительно заряженному аноду. Достигнув анода, электроны движутся по соединительным проводникам к положительному полюсу источника анодного напряжения U, а избыточные электроны с отрицательного полюса источника текут к катоду.

Образование в анодной цепи диода потока электронов можно сравнить с таким явлением. Если над кипящей водой поместить крышку кастрюли или тарелку, то образовавшийся пар будет на ней охлаждаться и «сгущаться» в капельки воды. С помощью воронки мы можем эту воду вернуть в кастрюлю. Получается как бы замкнутая цепь, по которой движутся частицы воды.

Ток анодной цепи называют анодным током , а напряжение между анодом и катодом лампы -анодным напряжением . Наряду с термином «анодное напряжение» применяют также термины «напряжение на аноде», «напряжение анода». Все эти термины равнозначны: говоря «анодное напряжение», «напряжение на аноде» или «напряжение анода», подразумевают напряжение, -действующее между анодом и катодом. Если полюсы анодной

батареи или источника тока присоединены непосредственно к катоду и аноду лампы, то анодное напряжение будет равно напряжению источника тока.

Будет ли в анодной цепи диода протекать ток, если положительный полюс анодной батареи соединить с катодом, а отрицательный - с анодом? Конечно, нет. Ведь анод в этом случае имеет отрицательный заряд. Он будет отталкивать электроны, испускаемые катодом, и никакого тока в этой цепи не будет.

Итак, двухэлектродная электронная лампа, как и полупроводниковый диод, обладает свойством односторонней проводимости тока. Но она в отличие от полупроводникового диода пропускает через себя только прямой ток, т. е. только в одном направлении - от катода к аноду. В обратном направлении, т. е. от анода к катоду, ток идти не может. В этом отношении радиолампа, бесспорно, превосходит полупроводниковый диод, через который течет небольшой обратный ток.

Что влияет на величину анодного тока диода? Если катод имеет постоянный накал и излучает беспрерывно одно и то же количество электронов, то величина анодного тока зависит только от анодного напряжения. При небольшом анодном напряжении анода достигнут лишь те электроны, которые в момент вылета из катода обладают наиболее высокими скоростями. Другие, менее «быстрые» электроны останутся возле катода. Чем выше анодное напряжение, тем больше электронов притянет к себе анод, тем значительнее будет анодный ток. Однако не следует думать, что повышением анодного напряжения можно бесконечно увеличивать анодный ток.При некотором достаточно высоком анодном напряжении все электроны, излучаемые катодом, будут попадать на анод и при дальнейшем увеличении напряжения на аноде анодный ток перестаёт расти. Это явление называют насыщением анода. Для каждой лампы существует некоторый предельный анодный ток, превышение которого ведет к нарушению свойства катода

испускать электроны. То есть катод радиолампы потеряет эмиссию :

Излучение электронов с поверхности тела в окружающее пространство под воздействием внешней энергии называется электронной эмиссией.

Увеличить эмиссию катода можно повышением напряжения на его накале. Но при этом продолжительность жизни лампы резко падает, а при чрезмерно большом накале катод быстро теряет эмиссию или совсем разрушается.

А что происходит в цепи анода, когда в ней действует переменное напряжение?

Обратимся к Рис. 4. Здесь, как и в предыдущих примерах, катод накаляется током батареиGB н . На анод лампы подается синусоидальное переменное напряжение, источником которого может быть, например, электроосветительная сеть. В этом случае напряжение на аноде периодически изменяется по величина и знаку (Рис. 4.а ).

Так как диод обладает односторонней проводимостью, ток через него идет только при положительном напряжении на его аноде. Говоря иными словами, диод пропускает положительные полуволны (Рис. 4.б ) и не пропускает отрицательных полуволн переменного тока.В результате в анодной цепи течет ток одного направления, но пульсирующий с частотой переменного напряжения на аноде. Происходит выпрямление переменного тока.

Если в анодную цепь включить нагрузочный резистор R н , через него также будет течь, выпрямленный диодом ток. При этом на одном конце резистора, соединенном с катодом, будет плюс, а на другом - минус выпрямленного напряжения. Это напряжение, создающееся на резисторе, может быть подано в другую цепь, для питания которой необходим постоянный ток.

Двухэлектродные лампы, как и полупроводниковые точечные диоды, применяют для детектирования высокочастотных колебаний, раньше их часто использовали в выпрямителях для питания радиоаппаратуры. Лампы, предназначенные для работы в выпрямителях, называют кенотронами .

КАК РАБОТАЕТ ТРИОД

А теперь поместим между катодом и анодом сетку. Получится триод. Присоединим к его электродам источники накального и анодного напряжения. В анодную цепь включим миллиамперметр, чтобы следить за всеми изменениями тока в этой цепи. (Рис-5. )

Сетку временно соединим проводником с катодом (Рис-5. а . ). В этом случае сетка, имея нулевое напряжение относительно катода, почти не оказывают влияния на анодный ток: анодный ток будет примерно таким же, как в случае с диодом.

Удалим проводник, замыкающий сетку на катод, и включим между ними батарею с небольшим напряжением, но так, чтобы ее отрицательный полюс был соединен с катодом, а положительный - с сеткой (Рис-5. б . ). Эту батарею назовем сеточной и обозначимGB c . Теперь сетка находится под положительным напряжением относительно катода. Она стала как бы вторым анодом. Образовалась новая цепь - сеточная, состоящая из участка сетка - катод, батареиGB c и соединительных проводов. Имея положительный заряд, сетка притягивает к себе электроны. Но набравшие скорость электроны будут перехвачены силой притяжения более высокого, чем на сетке, анодного напряжения. В результате анодный ток станет больше, чем тогда, когда сетка была соединена непосредственно с катодом. Такой же прирост анодного тока можно было бы получить за счет повышения анодного напряжения, но для этого пришлось бы в анодную батарею добавить в несколько раз больше элементов, чем имеет сеточная батарея.

Если добавить к сеточной батарее еще два-три элемента и тем самым увеличить напряжение на сетке, анодный ток еще больше возрастет. Значит, положительное напряжение на сетке помогает аноду притягивать электроны, способствует росту анодного тока. При этом некоторая часть электронов оседает и на сетке. Но они сразу же «стекают» через сеточную батарею на катод. Появляется небольшой сеточный ток -ток сетки .

С повышением положительного напряжения на сетке увеличивается анодный ток лампы, но одновременно растет и ток сетки. Может случиться, что при некотором довольно большом напряжении на сетке ток в ее цепи станет больше анодного. Это объясняется тем, что сетка, находясь ближе к катоду, притягивает к себе электроны сильнее, чем удаленный анод. В этом случае вылетевшие из нити электроны так разделятся между сеткой и анодом, что большая часть их придется на долю сетки. Такое явление крайне нежелательно для работы лампы - она может испортиться.

Теперь поменяем местами полюсы батареи GB c , чтобы на сетке относительно катода было отрицательное напряжение (Рис-5. в . ). Посмотрим на стрелку миллиамперметра. Она покажет значительно меньший анодный ток, чем в предыдущем эксперименте. Почему анодный ток резко уменьшился? На пути электронов оказался отрицательно заряженный электрод, который препятствует движению их к аноду, отталкивает электроны обратно к катоду. Часть электронов, обладающих наибольшими скоростями, все же «проскочит» через отверстия в сетке и достигнет анода, но число их будет во много раз меньше, чем при положительном напряжении на сетке. Этим и объясняется резкое ослабление анодного тока.

По мере увеличения отрицательного заряда на сетке ее отталкивающее действие на электроны будет возрастать, а анодный ток - уменьшаться. А при некотором достаточно большом отрицательном напряжении на сетке она не пропустит к аноду ни одного электрона - анодный ток вообще исчезнет (Рис-5. г . ). Следовательно, отрицательное напряжение на сетке «закрывает» лампу.

Изменение напряжения на сетке оказывает в несколько раз более сильное влияние на анодный ток, чем такое же изменение напряжения на аноде лампы. Сетка управляет потоком электронов, летящих от катода к аноду лампы. Поэтому сетку называют управляющей. Это свойство триода и используется для усиления электрических колебаний. (Рис-6.)

Работу триода как усилителя можно иллюстрировать схемой и графиками, показанными на Рис-6 . Здесь к участку сетка - катод лампы, т. е. в цепь сетки, подается переменное напряжениеU вх , которое надо усилить. Источником этого напряжения может быть детекторный приемник, микрофон, звукосниматель. В анодную цепь лампы включена анодная нагрузка - резисторR а . Пока в цепи сетки нет переменного напряжения (участок0а на графиках), в анодной цепи течет не изменяющийся по величине токI а , соответствующий нулевому напряжению на сетке.Это среднее значение анодного тока - ток покоя. Но вот в цепи сетки начало действовать переменное напряжение (на графиках - участки

аб).

Теперь сетка периодически заряжается то положительно, то отрицательно, а анодный ток начинает колебаться: при положительном напряжении на сетке он возрастает, при отрицательном - уменьшается. Чем больше изменяется напряжение на сетке, тем значительнее амплитуда колебаний анодного тока.

При этом на выводах анодной нагрузки R а появляется переменная составляющая напряжения, которая может быть подана в цепь сетки другой такой же лампы и еще раз усилена ею. Если в цепь сетки подавать напряжение звуковой частоты, скажем, от детекторного приемника, а в анодную цепь вместо резистораR а включить головные телефоны, то усиленное лампой напряжение заставит телефоны звучать во много раз громче, чем при подключении к детекторному приемнику.

Это явление называется усилением лампы…

Какое усиление может дать лампа? Это зависит от ее конструкции, в частности от густоты и расположения сетки относительно катода. Чем сетка гуще и ближе расположена к катоду, тем сильнее сказывается влияние ее напряжения на электронный поток внутри лампы, тем значительнее колебания анодного тока, тем, следовательно, лампа дает большее усиление. Выпускаемые нашей промышленностью триоды в зависимости от их назначения обладают

Экология познания. Наука и техника: Разгадка бестопливного источника электроэнергии заключается в получении электроэнергии непосредственно из обычного лампового триода-пентода в необычных режимах их работы

Валерий Дудышев разгадал тайну Николы Тесла про его источник электроэнергии на его электромобиле.
Зреет энергетическая революция в сфере альтернативной энергетики

Никола Тесла реально демонстрировал в работе бестопливный электромобиль еще в 1931 г. в Буфалло (США). Электроэнергия в электродвигатель на авто поступала от таинственной коробки с радиолампами. Но до сих пор эта тайна источника электроэнергии для электромобиля оставалась неразгаданной.

Разгадка заключается в получении электроэнергии непосредственно из обычного лампового триода-пентода в необычных режимах их работы. Необходимо лишь обеспечить взрывную электронную эмиссию с его катода. В итоге из лампового триода можно получить в электрическую нагрузку, присоединенную к нему параллельно - столько электроэнергии - сколько мы захотим (ну конечно в рамках разумного: скажем с выходной мощностью источника 5-10 квт). Взрывная электронная эмиссия – использованное в этом изобретении открытие академика Г. Месяца. - достигается в триоде подачей на управляющую сетку триода серии коротких по длительности но высоковольтных импульсов высокого напряжения.

Взрывная электронная эмиссия с поверхности катода приводит к образованию лавины электронов, ускоряемых управляющей сеткой и попадающих на анод триода

В итоге эта лавина электронов с анода поступает в электрическую нагрузку и через нее снова на анод триода. Вот так и возникает и поддерживается дармовой электрический ток в цепи «триод - нагрузка«. Иначе говоря в таком режиме обычный ламповый триод при сильном эл. поле на управляющей сетке становится дармовой источником электроэнергии.

Расчеты показывают, что обычный ламповый вакуумированный триод в таком режиме работы, позволяет получить мощную электронную эмиссию в ламповом триоде и после некоторой доработки триода-получить из обычного лампового триода бесплатную электроэнергию, причем при охлаждении катода и анода - с одной радиолампы до 10 квт - вот такие чудеса!

Весьма рициональным техническим решением является сочетание резонансного трансформатора Тесла с вакуумной лампой. В этом случае взрывная электронная эмессия с катода вакуумерй лампы обеспечивается самим трансформатором Тесла.

Мощная автоэлектронная эмиссия с выходной обмотки трансформатора Тесла

Вариант устройства с использованием трансформатора Тесла


Рис.1 Блок- схема конструкции источника дармовой электрической энергии. Данное устройство выполнено на основе совмещения трансформатора Тесла и сферической вакуумной лампы с игольчатым катодом.

Краткое описание конструкции источника дармовой электроэнергии

Вакуумная электронная лампа оригинальной конструкции (обведена пунктиром)содержит сферический анод 1 в виде наружной металлической полой вакуумированной сферы, внутри которой размещен сферический катод 2 с наружными иголками. Наружная сфера анод 1 помещена в центре кубического корпуса 3 с внутренней электроизоляцией.4 К аноду и катоду жестко присоединен металлические стержни 5 которые через отверстия 6 выходят наружу корпуса 3 и электрически соединены через ключи К2,3,4 соответственно с выходом трансформатора Тесла 7 и электрической нагрузкой 8, присоединенной к заземлителю 9. Трансформатор Тесла 7 присоединен по входу ключом К1 к первичному маломощному источнику электроэнергии 11 (например, батарейка «Крона»). Параллельно выходного электрической нагрузке 8 через ключом К4 присоединен преобразователь напряжения 10. служащий дл преобразования выходного высоковольтного напряжения с анода 1 в стандартные параметры электроэнергии 220 вольт 50 гц)

Устройство работает следующим образом: Вначале ключом К1 (12) присоединяют первичный источник электроэнергии 11 к трансформатору Тесла 7. Выходное высоковольтное напряжение с его выхода подают через ключ К2 на сферический игольчатый электрод – катод 2, которое образует с его игл мощную электронную эмиссию. Поток вырванных электронов с игл катода 2 достигает анода 1 и оседает на его внутренней поверхности.

В результате наружная поверхность сферического полого анода 1 приобретает избыточный электрический заряд, т.е. электрически заряжается до высоких напряжений. Затем после зарядки сферическорго анода 1. его присоединяют электрически через выходной стержневой электрод 5 ключом К3 к электрической нагрузке 8 и электрический заряд с анода 1начинает стекать черехз нагрузку 8 в заземлитель 9 и через него в Землю, т.е. в электрической нагрузке 8 возникает полезный электрический ток и вырабатывается полезная электроэнергия. При необходимости получения в иных полезных нагрузках электроэнергии стандартных параметров предусмотрен преобразователь напряжения включают ключ К4.

Избыточная электроэнергия в нагрузке 8 по сравнению с затратами электроэнергии от первичного источника 12 на работу трансформатора Тесла 7 обусловлена лавинной мощной автоэлектронной эмиссией электронов под воздействием огромных электрических сил электрического поля, создаваемого вторичной обмоткой трансформатора Тесла на иглах сферического катода 2

рансформатор Тесла - источник мощной электронной эмиссии. Посредством обычной вакуумной электронной лампы (лампового диода) этот поток электронов может быть превращен в полезную электроэнергию. Более подробно в статье ТРАНСФОРМАТОР ТЕСЛА В КАЧЕСТВЕ ИСТОЧНИКА ДАРМОВОЙ ЭЛЕКТРОЭНЕРГИИ.


Вывод

Идея бесплатного электричества из триода состоит в том что вполне можно использовать обычный ламповый триод, как источник электроэнергии, при условии получения значительной электронной эмиссии с катода!

Для получения электричества в обычном ламповом триоде - надо просто подать высокое напряжение между катодом и ускоряющей сеткой причем с + на сетке, и тогда, с возникновением потока электронной эмиссии, с катода и его ускорении + на сетке триода - на анод триода - с катода хлынет поток электронов - электроток, который и замкнем через нагрузку на катод.

Чем больше по величине ускоряющее электрическое поле между катодом и сеткой - тем больше электронная эмиссия с катода (вплоть до взрывной эл. эмиссии), значит, и больше полезный электрический ток с анода - эл. ток в нагрузке.

Так, если создать элементарные нормальные условия работе лампового триода в таком свободном режиме (ведь электронов в материале катода огромное количество и хватит на много лет работы) – то вполне получаем дармовую электроэнергию в эл. нагрузке на концах триода - параллельно ему. Эффект получить наиболее просто именно на ламповом триоде, потому что в нем вакуум. Следовательно, электронная эмиссия и тем более взрывная эл. эмиссия в нем возникнет наиболее просто и особо эффективно, при наличии большого электрического потенциала на сетке обычного триода с вакуумом внутри его стеклянной колбы. опубликовано

Принцип действия

Вакуумные электронные лампы с подогреваемым катодом

  • В результате термоэлектронной эмиссии электроны покидают поверхность катода.
  • Под воздействием разности потенциалов между анодом (+) и катодом (-) электроны достигают анода и образуют анодный ток во внешней цепи.
  • С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды электрического потенциала.

В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.

Газонаполненные электронные лампы

Основным для этого класса устройств является поток ионов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться разрядом в разреженном газе за счёт напряжённости электрического поля. Как правило, такие лампы используются либо в низкочастотных генераторах (тиратроны), либо в схемах управляемых выпрямителей, часто с высокими выходными токами (игнитрон).

Микроэлектронные приборы с автоэмиссионным катодом

Процесс миниатюризации электронных вакуумных ламп привел к отказу от подогреваемых катодов и переходу на автоэлектронную эмиссию с холодных катодов специальной формы из специально подобранных материалов. Это дает возможность довести размеры устройств до микронных размеров и использовать при их изготовлении стандартные техпроцессы полупроводниковой индустрии. В настоящее время такие конструкции активно исследуются.

История

Катод

По способу подогрева катоды подразделяются на катоды прямого и косвенного накала.

Катод прямого накала представляет собой металлическую нить из металла с высоким удельным электрическим сопротивлением. Ток накала проходит непосредственно через катод. Лампы прямого накала потребляют меньшую мощность, быстрее разогреваются, отсутствует проблема обеспечения электрической изоляции между катодом и нитью накала (эта проблема существенна в высоковольтных кенотронах). Однако, обычно они имеют меньший срок службы, при использовании в сигнальных цепях требуют питания накала постоянным током, а в ряде схем неприменимы из-за влияния разницы потенциалов на разных участках катода на работу лампы. Лампы прямого накала часто называют «батарейными», так как они широко применялись в аппаратуре с автономным питанием; но прямонакальный катод применяется и в мощных генераторных лампах. Там он представляет собой не нить, а достаточно толстый стержень.

Катод косвенного накала представляет собой цилиндр, внутри которого располагают подогреватель (нить накала), электрически изолированную от катода. Подогреватель приходится раскалять гораздо сильнее, чем прямонакальный катод, поэтому он потребляет намного бо́льшую мощность, лампа выделяет много тепла, требует заметного времени для прогрева (десятки секунд, а то и минуты). Зато площадь катода можно сделать намного больше (а значит, увеличить ток, протекающий через лампу), катод изолирован от источника питания подогревателя (это снимает некоторые схемотехнические ограничения, присущие лампам прямого накала) и питать подогреватель в большинстве случаев можно переменным током (сравнительно массивный катод хорошо сглаживает колебания температуры, и фон переменного тока невелик). Подавляющее большинство ламп малой и средней мощности для стационарной аппаратуры имеют катод косвенного накала.

Чтобы облегчить эмиссию электронов, катоды ламп обычно активируют - покрывают тончайшим слоем вещества, имеющего относительно малую работу выхода : торий , барий и их соединения . Активирующий слой в процессе работы постепенно разрушается и лампа теряет эмиссию, «садится» - с поверхности катода истекает все меньше электронов, уменьшается ток лампы, то есть снижается её усиление и выходная мощность. Срок службы «севшей» лампы можно продлить, немного увеличив напряжение накала; но тут увеличивается риск перегорания подогревателя.

Чисто металлические катоды (например, в мощных лампах с большой плотностью тока катода) делают из вольфрама .

Анод

Положительный электрод. Выполняется иногда в форме пластины, но чаще в форме коробочки, окружающей катод и сетки и имеющей форму цилиндра или параллелепипеда. В мощных лампах анод может иметь рёбра или «крылышки» для отвода тепла. Изготавливается обычно из никеля или молибдена, иногда из тантала и графита.

Сетка

Между катодом и анодом располагаются сетки , которые служат для управления потоком электронов и устранения побочных явлений, возникающих при движении электронов от катода к аноду.

Сетка представляет собой решётку либо (чаще) спираль из тонкой проволоки, навитую вокруг катода на нескольких поддерживающих стойках (траверсах). В стержневых лампах роль сеток выполняет система из нескольких тонких стержней, параллельных катоду и аноду, и физика их работы иная, чем в традиционной конструкции.

По назначению сетки подразделяются на следующие виды:

В зависимости от назначения лампы, она может иметь до семи сеток. В некоторых вариантах включения многосеточных ламп отдельные сетки могут выполнять роль анода. Например, в генераторе по схеме Шембеля на тетроде или пентоде собственно генератором служит «виртуальный» триод, образованный катодом, управляющей сеткой и экранирующей сеткой в качестве анода .

Баллон

Основные типы

Основные типы электронных вакуумных ламп:

  • Диоды (легко делаются на большие напряжения, см. кенотрон)
  • Пентоды и Лучевые тетроды
  • Лучевые пентоды (как разновидность этиого типа)
  • Гептоды (пентагриды , пятисеточные)
  • Комбинированные лампы (фактически включают 2 или более ламп в одном баллоне)
  • Лампы со вторичной эмиссией и спецлампы с особыми характеристиками (квадратичной, гиперболической) - создавались для аналоговых ЭВМ, но не получили широкого распространения.

Современные применения

Высокочастотная и высоковольтная мощная техника

  • В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны , клистроны , лампы бегущей волны (ЛБВ) обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую другая элементная база в принципе неосуществима).
  • Магнетрон можно встретить не только в радаре , но и в микроволновой печи.
  • При необходимости выпрямления или быстрой коммутации нескольких десятков киловольт, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, кенотрон обеспечивает приемлемую динамику на напряжениях до миллиона вольт.

Военная промышленность

Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс . В единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы , отличавшиеся малыми размерами и большой механической прочностью.

Космическая техника

Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском .

Повышенная температура среды и радиация

Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.

Маркировки в других странах

В Европе в 1930-е годы ведущими производителями радиоламп была принята Единая европейская система буквенно-цифровой маркировки.

Первая буква характеризует напряжение накала или его ток:

  • А - напряжение накала 4 В;
  • В - ток накала 180 мА;
  • С - ток накала 200 мА;
  • D - напряжение накала до 1,4 В;
  • E - напряжение накала 6,3 В;
  • F - напряжение накала 12,6 В;
  • G - напряжение накала 5 В;
  • H - ток накала 150 мА;
  • К - напряжение накала 2 В;
  • P - ток накала 300 мА;
  • U - ток накала 100 мА;
  • V - ток накала 50 мА;
  • X - ток накала 600 мА.

Вторая и последующие буквы в обозначении определяют тип ламп:

  • A - диоды;
  • B - двойные диоды (с общим катодом);
  • C - триоды (кроме выходных);
  • D - выходные триоды;
  • E - тетроды (кроме выходных);
  • F - пентоды (кроме выходных);
  • L - выходные пентоды и тетроды;
  • H - гексоды или гептоды (гексодного типа);
  • K - октоды или гептоды (октодного типа);
  • M - электронно-световые индикаторы настройки;
  • P - усилительные лампы со вторичной эмиссией;
  • Y - однополупериодные кенотроны (простые);
  • Z - двухполупериодные кенотроны.

Двузначное или трёхзначное число обозначает внешнее оформление лампы и порядковый номер данного типа, причем первая цифра обычно характеризует тип цоколя или ножки, например:

  • 1-9 - стеклянные лампы с ламельным цоколем («красная серия»);
  • 1х - лампы с восьмиштырьковым цоколем («11-серия»);
  • 3х - лампы в стеклянном баллоне с октальным цоколем;
  • 5х - лампы с октальным цоколем;
  • 6х и 7х - стеклянные сверхминиатюрные лампы;
  • 8х и от 180 до 189 - стеклянные миниатюрные с девятиштырьковой ножкой;
  • 9х - стеклянные миниатюрные с семиштырьковой ножкой.

Газоразрядные лампы

В газоразрядных лампах обычно используется тлеющий или дуговой разряд в инертных газах или в парах ртути. Такие лампы чаще называют поэтому газоразрядными или ионными (по типу проводимости) приборами. Для очень больших параметров по току и напряжению прибор заполняется жидким диэлектроком (трансформаторным маслом), такие системы называются тригатронами , они способны выдерживать напряжения порядка мегавольт и коммутировать токи порядка сотен килоампер. Проведениен в ионных приборах инициируется либо прямым током через прибор - в стабилитронах, либо подачей управляющего напряжения на сетку/сетки, либо воздействием на газ в приборе ультрафиолетовым или лазерным излучением.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png