Для того чтобы выбрать ноутбук правильно, необходимо определить, как будет использоваться это устройство. Дело в том, что именно то, какое программное обеспечение вы планируете на нем запускать, определяет то, какую модель вам необходимо выбрать. Если вы не проанализируете это заранее, то можете столкнуться либо с тем, что возможностей ноутбука вам будет катастрофически не хватать, и вы не сможете использовать его по своему назначению. Также вы рискуете переплатить большую сумму за те функции, которые вам совсем не нужны.

Как узнать технические параметры ноутбука

Определяющими параметрами ноутбука являются его технические характеристики. Узнать их вы можете в тех паспорте устройства, который можно попросить у консультантов в магазине. Также можно узнать необходимую информацию из специального буклета, размещаемого рядом с ценником. В интернет-магазинах эта информация располагается в описании каждой модели.

Тип и частота процессора

Процессор является главным комплектующим любого устройства, определяющим быстроту его работы и его энергопотребление. Основными производителями на рынке ПК являются известные компании Intel и AMD. Процессоры Intel стоят более дорого, однако их продукция нередко оказывается настоящим технологическим прорывом в IT-технике.

Процессоры AMD позиционируются как недорогое и экономичное решение. Этот производитель в борьбе за рынок стремится к сохранению производительности, сравнимой с продукцией Intel, и низкой стоимости. В настоящее время улучшение скорости процессоров идет по пути увеличения числа ядер, а также оптимизации их взаимодействия.

Наиболее распространенными в ноутбуках и нетбуках в настоящее время являются одно- и двуядерные процессоры. Однако в последнее время все большую популярность приобретают шести- и восьми ядерные архитектуры, которые когда то устанавливались только в настольные ПК.

Количество ядер процессора

Основные технические параметры процессора – это количество ядер, тактовая частота, объем кэш-памяти, частота шины. Некоторое время назад увеличение производительности процессоров достигалось производителями при помощи лишь увеличения тактовой частоты, что приводило к их перегреву. В результате разработчики были вынуждены искать новый путь увеличения мощности устройств, решением стало использование нескольких ядер, что позволило повысить производительность системы, выполняя несколько потоков программ одновременно.

Преимущества многоядерных процессоров во многом связано с используемым программным обеспечением. Старые приложения, не рассчитанные на многоядерность, используют дополнительные ядра весьма ограниченно, поэтому при работе со старыми программами производительность одноядерных процессоров может быть более высокой. Современные приложения рассчитаны на использование в устройствах с многоядерными процессорами, а операционные системы автоматически распределяют нагрузку между ядрами.

Технические характеристики процессора

Тактовая частота ЦП представляет собой то, насколько быстро процессор будет выполнять те или иные вычисления. Это величина измеряется в гигагерцах и прямо влияет на его вычислительную мощность. В настоящее время, когда все новые модели процессоров являются многоядерными, тактовая частота не является основной характеристикой производительности.

Кэш-память - сверхбыстрая память, объем которой составляет от 1 до 8 Мбайт. Располагается на кристалле процессора. Большой объем кэш-памяти необходим для ускорения работы программ для редактирования видео, игр и просмотров фильмов.

Частота системной шины - количество тактов за секунду, которые совершает системная шина и магистральный канал, необходимый для обмена данными между процессором с ОЗУ и другим устройствами.

Оперативная память

При выборе ноутбука очень важно не совершить весьма распространенную ошибку, которую делают многие неопытные пользователи. Это заблуждение связано с тем, что многие считают ОЗУ основной характеристикой, определяющей быстродействие компьютера.

На самом деле, оперативная память никак не сможет улучшить скорость выполнение операций компьютером, если остальные комплектующие не позволяют этого сделать. К примеру, Мощный многоядерный процессор будет практически бесполезным, если установить его в устройство с 512 Мб оперативной памяти, в то время как ресурсоемкие приложения, которым требуется 4 Гб ОЗУ, не смогут работать на слабом процессоре.

Кроме того, учтите, что оперативная память – это та характеристика, которая может быть увеличена, тогда как процессор и материнская плата не могут быть заменены. Поэтому хорошим решением может быть приобретение, к примеру, ноутбука 2 Гб ОЗУ, но с материнской платой, позволяющей увеличить ее до 16 Гигабайт.

Учтите, что не стоит приобретать ноутбук с ОЗУ более 4 Гб, если вы собираетесь установить на него 32- битные Windows XP и Windows Vista, так как эти операционные системы просто не «увидят» больший объем памяти.

Объем жесткого диска

В настоящее время существует два типа жестких дисков, отличающихся друг от друга по технологии внутренних накопителей – HDD и SDD. Жесткий магнитный диск (HDD) является наиболее распространенным. Такие диски более дешевы, однако имеют ряд других недостатков. Вследствие того, что вся информация на них хранится в виде намагниченных ячеек и считывается специальной подвижной головкой, устройства очень легко повреждаются в результате падений или воздействия на них магнитных полей.

Твердотельные накопители (SSD) основаны на технологии флеш-памяти. Эту же технологию можно увидеть в USB флешках. Они более быстры, стойки к ударам, а также абсолютно бесшумны вследствие отсутствия в них движущихся частей. Установка операционной системы на твердый накопитель позволит включать устройство за несколько секунд. Максимальный объем SSD на данный момент уступает HDD: 2 Тбайт против 512 Гбайт.

В настоящее время крупнейшими производителями графических контроллеров на рынке являются компании NVidia и AMD. Данные производители постоянно конкурируют между собой за лидерство, поэтому вопрос о том, выбрать видеокарту NVidia или AMD, является некорректным. Каждая из компаний периодически предлагает пользователям новые функциональные и производительные продукты. Поэтому для сравнения, необходимо анализировать устройства, относящиеся к конкретным семействам видеокарт.

Если вы собираетесь использовать ноутбук для запуска на нем современных 3D игр, в обязательном порядке обратите внимание на видеокарту (тип графического контроллера) устройства. В настоящее время в ноутбуках можно встретить два вида графических контроллеров: встроенный, когда контроллер встроен в процессор, дискретный, когда контроллер является отдельным устройством. В некоторых устройствах имеется и встроенный, и дискретный контроллеры сразу.

Основные характеристики видеокарт

Интегрированная в системную плату компьютера видеокарта использует для обработки графики ресурсы центрального процессора и ОЗУ. Такой контроллер является намного менее мощным, по сравнению с внешним, однако он и стоит намного меньше. Если вы не собираетесь использовать ноутбук для 3D игр, редактирования фото и видео, а также хотите сэкономить на его стоимости, встроенный графический контроллер – это ваш выбор. Встроенная видеокарта вполне справляется с выводом не ресурсоемких игр и даже позволяет смотреть HD фильмы. Также она позволяет запускать старые игры, где не использовалась 3D графика.

Дискретная графическая система характеризуется наличием собственного процессора, предназначенного специально для вывода графической информации. Кроме того, в ней имеется отдельная оперативную память (видеопамять). Дискретная память намного дороже и мощнее встроенной.

Вес и габариты устройства

В зависимости от того, как вы собираетесь использовать ноутбук, необходимо обратить внимание на его массу и размеры. Если вы часто путешествуете и планируете брать устройство в свои поездки, то для вас важным моментом будет являться то, насколько удобно перевозить ноутбук вместе с собой.

Однако ради более комфортабельной транспортировки придется пожертвовать мощностью устройства. У небольшого устройства, предназначенного для постоянно перевозки, диагональ экрана не превышает 15 дюймов, вес менее 2 килограмм, матовая поверхность, которую сложно поцарапать. Для особо частых поездок, где вы не планируете запускать игры и ресурсоемкие приложения, гораздо выгоднее будет приобретение нетбука или даже планшета.

Если вы планируете использовать ноутбук исключительно дома, то вам стоит сосредоточиться на технических характеристиках устройства, так как его вес и габариты не будут играть для вас особого значения.

Мощность аккумулятора и длительность автономной работы

Если вы планируете использовать ноутбук в поездах и электричках, где отсутствуют розетки электропитания, то вам просто необходимо выбрать модель, работающую без подзарядки максимальное время.

При выборе ноутбука по времени автономной работы необходимо очень тщательно проанализировать всю имеющуюся информацию. Нередко технические параметры, заявленные производителем, совершенно не совпадают с результатами тестов. Поэтому если время автономной работы устройства является для вас очень важной характеристикой устройства, прочитайте независимые обзоры ноутбука в компьютерных журналах. Кроме того, полезную информацию можно узнать на специализированных форумах.

Как увеличить длительность автономной работы ноутбука

На длительность работы без подзарядки влияет несколько параметров: мощность процессора, емкость аккумулятора, емкость аккумулятора, яркость дисплея, производительность, использование дополнительных устройств. Существует несколько способов повышения длительности работы устройства, однако все они связаны с различными ограничениями (снижение яркости дисплея, отказ от работы с ресурсоемкими приложениями, отключение сетевой карты или беспроводных адаптеров и т.д.). Но самый простой способ увеличения длительности работы ноутбука – это приобретение запасного аккумулятора, который можно просто возить с собой.

В последних моделях ноутбуков применяется энергосберегающие технологии Intel Speed-Step и AMD PowerNow!, которые регулируют тактовую частоту процессора.

Съемные накопители

Несмотря на широкое распространение интернета и флеш-технологий, некоторую информацию до сих пор удобнее хранить на CD и DVD дисках, преимущество которых составляет низкая стоимость и возможность перезаписи.

Вместе с тем, многие производители отказываются от использования оптических приводов, так как это позволяет уменьшить габариты и вес устройства. Поэтому ультрапортативные компьютеры, как правило, приводами не комплектуются. Однако если вы планируете постоянно устанавливать на ноутбук новые игры и смотреть фильмы без использования DVD привода вам не обойтись.

Операционная система

Как правило, ноутбуки продаются с предустановленными в них операционными системами. Наиболее распространенными ОС в настоящее время являются системы семейства Windows: XP, Vista, 7, которых вполне хватит для потребностей большинства пользователей. Однако данные системы требуют лицензии и потому повышают стоимость ноутбука, поэтому если у вас есть возможность приобрести по более низкой цене ноутбук с аналогичными техническими параметрами, но неподходящей вам операционной системой, смело покупайте его, а нужную ОС вы сможете поставить самостоятельно.

Ноутбуки от Apple поставляются с фирменной операционной системой Mac OS и комплектом всех необходимых для работы приложений. В этом случае вам не придется ничего переустанавливать. Чаще всего пользователи отказываются от систем на основе Linux/Unix, которые требуют большей квалификации, не подходят для запуска игр, а также ряда других приложений.

Во времена, когда мобильные телефоны были толстые и черно-белые, процессоры – одноядерные, а гигагерц казался непреодолимой планкой (лет 20 назад), единственной характеристикой для сравнения мощностей ЦП была тактовая частота. Десятилетие спустя второй важной характеристикой стало количество ядер. В наше время смартфон, толщиной менее сантиметра, содержит ядер больше, да и тактовую частоту имеет выше, чем простой ПК тех лет. Попробуем разобраться, на что влияет тактовая частота процессора.

Частота процессора влияет на скорость, с которой транзисторы процессора (и их внутри чипа сотни миллионов) производят переключение. Измеряется она в количестве переключений за секунду и выражается в миллионах или миллиардах герц (мегагерц или гигагерц). Один герц – это одно переключение транзисторов процессора в секунду, следовательно, один гигагерц – один миллиард таких переключений за то же время. За одно переключение, если говорить упрощенно, ядро делает одну математическую операцию.

Следуя обычной логике можно прийти к выводу, что чем больше частота – тем быстрее переключаются транзисторы в ядрах, тем скорее решаются задачи. Именно поэтому в прошлом, когда основная масса процессоров была по сути усовершенствованным Intel x86, архитектурные отличия были минимальны, и было ясно, что чем больше частота тактов – тем быстрее идут вычисления. Но со временем все изменилось.

Можно ли сравнивать частоты разных процессоров

В 21 веке разработчики научили свои процессоры обрабатывать за такт не одну инструкцию, а больше. Поэтому процессоры с одинаковой частотой тактов, но основанные на разных архитектурах, выдают разный уровень быстродействия. Intel Core i5 2 ГГц и Qualcomm Snapdragon 625 2 ГГц – это разные вещи. Хоть у второго ядер больше, но в тяжелых задачах он будет слабее. Поэтому саму частоту разных типов ядер сравнивать нельзя, важно учитывать еще и удельную производительность (количество выполнений инструкций за такт).

Если проводить аналогию с машинами, то тактовая частота – это скорость в км/ч, а удельная производительность – грузоподъемность в кг. Если рядом будут ехать легковушка (процессор ARM для смартфона) и самосвал (чип x86 для ПК) – то при равной скорости легковушка за раз перевезет пару сотен кило, а грузовик – несколько тонн. Если же говорить о разных типах ядер именно для смартфонов (Cortex A53, Cortex A72, Qualcomm Kryo) – то это все легковушки, но с разной вместительностью. Соответственно, тут разница уже будет не так огромна, но тоже значительная.

Сравнивать можно только тактовые частоты ядер на одинаковой архитектуре. Например, MediaTek MT6750 и Qualcomm Sanapdragon 625 содержат по 8 ядер Cortex A53. Но у МТК их частота – до 1,5 ГГц, а у Куалкомм – 2 ГГц. Следовательно, второй процессор будет работать примерно на 33% быстрее. А вот Qualcomm Snapdragon 652 хоть и имеет частоту до 1,8 ГГц, но работает быстрее модели 625, так как в нем используются более мощные ядра Cortex A72.

Что дает высокая частота процессора в смартфоне

Как мы уже выяснили, чем выше тактовая частота – тем быстрее работает процессор. Следовательно, и производительность смартфона с более высокочастотным чипсетом будет выше. Если один процессор смартфона содержит 4 ядра Kryo на 2 ГГц, а второй – 4 такие же ядра Kryo на 3 ГГц, то второй будет примерно в 1,5 раза быстрее. Это ускорит запуск приложений, сократит время включения, позволит резвее обрабатывать тяжелые сайты в браузере и т.д.

Однако, выбирая смартфон с высокими частотами процессора, следует также помнить, что чем они выше – тем больше и потребление энергии. Поэтому если производитель накрутил побольше гигагерц, но не оптимизировал устройство должным образом – оно может перегреваться и входить в «троттлинг» (принудительный сброс частот). Таким недостатком в свое время страдал, например, Qualcomm Snapdragon 810.

Мы продолжаем серию материалов, посвящённых исследованию производительности современных процессоров в реальных задачах и влиянию различных их характеристик на производительность. В этой статье мы затронем тему, которую ранее не исследовали: влияние на производительность частоты работы ядра. Теоретически данный вопрос в достаточной степени проработан: в любой конкретной архитектуре при росте частоты работы ядра, производительность процессора должна сначала практически линейно расти, потом, на определённом этапе, темпы роста должны замедляться, и, наконец, начиная с некой частоты, дальнейшее её наращивание становится уже бессмысленным т.к. перестаёт приводить к росту производительности процессора. Причина этих явлений также давно обозначена: производительность «упирается» в подсистему памяти, которая просто не успевает доставлять данные и код с такой скоростью, с которой их обрабатывает ядро CPU.

Нас же, как практиков, заинтересует простой вопрос: где именно наступают эти «переломные частотные моменты» в случае с конкретными процессорными архитектурами? Сегодня мы исследуем данный вопрос применительно к процессору Intel Core i7.

Конфигурация тестовых стендов

Тестовый стенд остался таким же, как и в двух предыдущих сериях, посвящённых процессору Intel Core i7:

  • Процессор: Intel Core i7 950;
  • Кулер: ASUS Triton 81;
  • Системная плата: ASUS P6T SE (чипсет Intel X58);
  • Память: 3 модуля по 2 ГБ Corsair DDR3-1800 в режиме DDR3-1600;
  • Видеокарта: Palit GeForce GTX 275
  • БП: Cooler Master Real Power M1000.

Для исследований было решено взять 4 «процессора» с частотами от 1,86 до 3,06 ГГц, и шагом ровно в 400 МГц. Навскидку, мы посчитали, что для выявления основных тенденций этого хватит (не ошиблись). Штатная частота используемого CPU - как раз 3,06 ГГц (множитель ядра 23). Меньшие частоты получались путём уменьшения множителя, соответственно:

  • x20 - 2,66 ГГц;
  • x17 - 2,26 ГГц;
  • x14 - 1,86 ГГц.

Множитель внеядра* (да простят нас читатели за этот новояз, но попробуйте сами перевести одним словом англоязычный термин «uncore») у всех процессоров серии Core i7 одинаков - x16 (частота работы внеядра, соответственно - 2,13 ГГц). Технология Hyper-Threading была включена, а вот Turbo Boost пришлось выключить т.к. в данном исследовании нам был нужен процессор, работающий на строго определённых частотах.

* - Часть процессоров Core i7, находящаяся «снаружи ядра», и работающая на своей, отличной от ядра частоте. Две наиболее значимые части внеядра - контроллер памяти и контроллер процессорной шины.
Тестирование

На первом графике приведена кривая роста производительности, построенная на основании баллов производительности каждого «процессора», вычисленных, согласно нашей методике тестирования (красная линия). Синяя же линия олицетворяет собой «идеально масштабируемую» производительность, которая вычисляется, исходя из предыдущего результата и предположения о том, что следующий результат будет настолько же больше, насколько выросла частота процессора. Т.е. если 1,86 ГГц CPU продемонстрировал в некой группе производительность X, подразумевается, что «идеальная» производительность 2,26 ГГц CPU будет равна Y=X*2,26/1,86. Соответственно, производительность 2,66 ГГц процессора будет равна Z=Y*2,66/2,26. Зачем эта линия на графике? Нам кажется, что она позволяет сделать результаты данного тестирования существенно более наглядными. В конце концов, конкретные цифры всегда можно взять из , а вот степень расхождения между практикой и идеалом проще оценивать визуально.

На втором графике (если в нём есть необходимость) линии олицетворяют прирост производительности по мере увеличения частоты для каждого приложения из данной тестовой группы в отдельности. Отсчёт начинается с системы с частотой CPU 1,86 ГГц, производительность которой, соответственно, принята за 100% - поэтому все линии выходят из одной точки. Этот график позволяет нам более точно отследить поведение отдельных программ.

И, наконец - таблица с результатами тестов (также по каждому приложению в отдельности). Начиная со столбика «2,26 ГГц», в ней присутствуют не только абсолютные величины результатов, но и некие проценты. Что это? Это цифра, отражающая прирост производительности данной системы по отношению к предыдущей . Запомните, это очень важно: по отношению к предыдущей, а не к исходной . Таким образом, если мы видим в столбике «2,66 ГГц» цифру 22% - это значит, что система в данном приложении показала на 22% более хороший результат, чем при частоте процессора 2,26 ГГц .

Вообще, нелишним будет озвучить «идеальные» значения прироста производительности, чтобы читателям было проще ориентироваться в содержимом таблиц. Значения эти равны, соответственно:

  • при переходе 1,86 ГГц → 2,26 ГГц: ~+22%;
  • при переходе 2,26 ГГц → 2,66 ГГц: ~+18%;
  • при переходе 2,66 ГГц → 3,06 ГГц: ~+15%.

Учитывая то, что разброс +/-2% у нас принято считать допустимой погрешностью измерений, мы получаем 3 диапазона: от +20 до +24%, от +16 до +20%, и от +13 до +17%. Хотя, впрочем, нижние границы нас не очень интересуют: масштабируемость запросто может являться неидеальной, и даже равняться нулю (отрицательной, теоретически, быть не может). А вот суперлинейный прирост с идеальной точки зрения невозможен - поэтому значения выше +24%, +20% и +17%, соответственно, придётся как-то объяснять.

Также, традиционно, мы даём любознательным читателям ссылку на таблицу в формате Microsoft Excel , в которой приведены все результаты тестов в самом подробном виде. А также, для удобства их анализа, присутствуют две дополнительные закладки - «Compare #1» и «Compare #2». На них, как и в таблицах, присутствующих в статье, произведено сравнение четырёх систем в процентном отношении. Разница очень простая: в случае с Compare #1, проценты вычисляются так же, как в таблицах в статье, - по отношению к предыдущей системе, а в случае с Compare #2, все системы сравниваются с базовой (1,86 ГГц).

3D-визуализация

1,86 GHz 2,26 GHz 2,66 GHz 3,06 GHz
3ds max * 10,57 12,64 20% 15,43 22% 16,43 6%
Lightwave ↓ 23,02 18,64 23% 15,28 22% 12,87 19%
Maya 2,55 3,12 22% 3,84 23% 4,22 10%
SolidWorks ↓ 70,64 64,5 10% 60,72 6% 57,8 5%
Pro/ENGINEER ↓ 1457 1235 18% 1093 13% 1023 7%
UGS NX 2,35 2,72 16% 2,73 0% 3,23 18%
Group Score 94 111 18% 127 14% 140 10%

* - здесь и далее в таблицах стрелочкой вверх () помечены те тесты, где лучшим является больший результат, стрелочкой вниз (↓) - тесты, где лучшим является меньший результат.

Ждать от группы визуализации идеальной масштабируемости не стоило - всё-таки, по идее, в данном процессе не последнюю роль должна играть видеокарта. Однако, как оказалось, пакеты трёхмерного моделирования при интерактивной работе весьма существенно зависят от процессора, несмотря на использование различных 3D API (Lightwave и Maya - OpenGL, 3ds max - Direct3D). Собственно, чемпионом является как раз Lightwave, график которого представляет собой практически идеально прямую линию. Инженерные пакеты намного более скромны в аппетитах (то есть, получается, лучше используют видеокарту). Сверхлинейный рост производительности наблюдается при переходе с частоты 2,26 ГГц на частоту 2,66 ГГц (три раза) и при переходе с частоты 2,66 ГГц на частоту 3,06 ГГц (один раз). Пока что просто запомним это.

Трёхмерный рендеринг

1,86 GHz 2,26 GHz 2,66 GHz 3,06 GHz
3ds max 11,15 13,41 20% 15,9 19% 17,6 11%
Lightwave ↓ 120,9 99,06 22% 84,66 17% 74,41 14%
Maya 03:35 02:57 21% 02:31 17% 02:13 14%
Group Score 108 131 21% 154 18% 173 12%

Рендеринг, как и следовало ожидать, масштабируется практически идеально, причём независимо от пакета (и, соответственно, рендер-движка) - линии 3ds max, Maya и Lightwave на индивидуальном графике практически слились в одну толстую линию.

Научные и инженерные расчёты

1,86 GHz 2,26 GHz 2,66 GHz 3,06 GHz
Maya 5,77 6,97 21% 8,33 20% 9,82 18%
SolidWorks ↓ 60,48 51,06 18% 41,31 24% 40,96 1%
Pro/ENGINEER ↓ 2658 2186 22% 1725 27% 1539 12%
UGS NX ↓ 3,57 4,19 17% 4,96 18% 5,57 12%
MAPLE 0,1296 0,1569 21% 0,1925 23% 0,2197 14%
Mathematica 1,8134 2,225 23% 2,7142 22% 3,0364 12%
MATLAB ↓ 0,063229 0,052212 21% 0,045011 16% 0,0406 11%
Group Score 85 102 20% 123 21% 137 11%

Напомним, что в «вычислительной» группе участвуют приложения трёх типов: инженерные CAD, математические пакеты, и даже один пакет трёхмерного моделирования. Ситуация сложилась забавная: ни в одной группе, состоящей более чем из одного члена, «согласья нет». MAPLE и Mathematica возглавляют рейтинг самых хорошо масштабирующихся приложений (к ним присоединяется пакет трёхмерного моделирования Maya), однако у MATLAB с масштабируемостью скорости при росте частоты всё существенно хуже, особенно под конец. Инженерные CAD и вовсе разбрелись кто куда: у Pro/ENGINEER с масштабируемостью всё отлично, у UGS NX - похуже (его линия практически совпадает с MATLAB), а SolidWorks при переходе с 2,66 ГГц на 3,06 ГГц вообще практически никакого ускорения не получил. Соответственно, бессмысленно пытаться рассуждать о каких-то тенденциях при таком разнобое. Впрочем, благодаря приложениям-лидерам, средняя масштабируемость по группе вышла очень высокой (см. первый график - расхождение с идеалом весьма незначительно и начинается только под конец). И снова мы наблюдаем случаи сверхлинейного роста производительности, причём наиболее массовые при переходе с частоты 2,26 ГГц на 2,66 ГГц. Обратите внимание: учитывая количество случаев, это уже можно смело считать обозначившейся тенденцией.

Растровая графика

1,86 GHz 2,26 GHz 2,66 GHz 3,06 GHz
ACDSee ↓ 07:36 06:09 24% 05:22 15% 05:21 0%
Paint.NET ↓ 00:24 00:20 20% 00:17 18% 00:15 13%
PaintShop Pro ↓ 15:42 13:05 20% 10:24 26% 09:48 6%
Photoimpact ↓ 10:13 08:25 21% 07:15 16% 06:33 11%
Photoshop ↓ 08:52 07:32 18% 06:20 19% 05:50 9%
Group Score 90 108 20% 129 19% 138 7%

В группе растровой графики можно отметить поведение двух программ, выбивающихся из общей колеи: пакет ACDSee, который под конец перестал масштабироваться вообще (несмотря на то, что до этого у него всё было в норме и из общей группы он ничем не выделялся), и PaintShop Pro, у которого наблюдается резкий сверхлинейный скачок производительности... опять при переходе 2,26 → 2,66 ГГц! Чтобы не томить читателей, скажем сразу: увидим мы этот феномен ещё не раз и не два, а возможное объяснение ему мы дадим после комментариев ко всем тестам, т.к. по нашей версии оно универсальное, и от типа программного обеспечения совершенно не зависит.

Сжатие данных без потерь

1,86 GHz 2,26 GHz 2,66 GHz 3,06 GHz
7-Zip ↓ 06:06 05:02 21% 04:12 20% 03:46 12%
WinRAR ↓ 01:57 01:34 24% 01:18 21% 01:15 4%
Group Score 89 110 24% 132 20% 142 8%

Почти идеальная масштабируемость - и опять у WinRAR сверхлинейный рост в уже хорошо нам знакомой точке.

Компиляция

И снова мы наблюдаем «горб» на графике в районе 2,66 ГГц, где реальная производительность несколько превосходит идеальный прогноз. Однако расхождение не очень большое (см. ), около 2%, поэтому нельзя утверждать точно, имеем ли мы дело с вышеописанным феноменом, или же с банальной погрешностью измерений. Хотя, конечно, то, что эта «погрешность» опять возникла именно на точке 2,66 ГГц - конечно, наводит на определённые размышления. :)

Кодирование аудио

Достаточно странный результат, требующий дополнительных исследованний. Создаётся впечатление, что тест во что-то «упёрся», и это явно не процессор. Судя по данным , подозревать подсистему памяти не стоит. Быть может, жёсткий диск?..

Кодирование видео

1,86 GHz 2,26 GHz 2,66 GHz 3,06 GHz
Canopus ProCoder ↓ 05:28 04:33 20% 03:39 25% 03:18 11%
DivX ↓ 05:58 05:02 19% 04:22 15% 03:53 12%
Mainconcept VC-1 ↓ 08:34 07:09 20% 06:01 19% 05:26 11%
x264 ↓ 09:53 08:12 21% 07:02 17% 06:10 14%
XviD ↓ 03:40 03:05 19% 02:39 16% 02:22 12%
Group Score 97 117 21% 138 18% 154 12%

Одна из самых хорошо масштабируемых групп в этом тестировании, причём график по приложениям тоже очень плотный - все кривые, кроме одной, почти что складываются в одну толстую линию. Как ни странно, лидером группы является довольно старый Canopus ProCoder. Впрочем, данный феномен можно попытаться объяснить тем, что он же не очень хорошо использует многоядерность: более современные кодеки, умеющие задействовать все 8 ядер, должны создавать бо льшую нагрузку на подсистему памяти - и, соответственно, зависеть ещё и от неё. А Canopus ProCoder остаётся зависеть исключительно от процессора.

Java

Ситуация настолько похожа на предыдущую, что можно было бы сэкономить на диаграммах, использовав оба раза одну и ту же. :) Впрочем, ничего странного в этом нет: коль SPECjvm способен создавать хорошую нагрузку для процессоров с любым количеством ядер - неудивительно, что он и масштабируется хорошо при повышении быстродействия CPU.

Трёхмерные игры

1,86 GHz 2,26 GHz 2,66 GHz 3,06 GHz
STALKER: Clear Sky 48 55 15% 59 7% 60 2%
Devil May Cry 4 195 198 2% 199 0% 202 2%
Far Cry 2 49 57 16% 62 9% 65 5%
Grand Theft Auto 4 58 63 9% 65 3% 66 2%
Lost Planet 43 43 0% 43 0% 43 0%
Unreal Tournament 3 129 142 10% 155 9% 165 6%
Crysis: Warhead 46 48 4% 54 13% 56 4%
World in Conflict 45 48 7% 50 4% 50 0%
Left 4 Dead 101 116 15% 142 22% 150 6%
Group Score 102 109 7% 116 6% 118 2%

Тройка лидеров по процессорозависимости: Left 4 Dead*, Far Cry 2 и Unreal Tournament 3, причём Left 4 Dead идёт впереди всех с весомым отрывом. Следует заметить, что вхождение в тройку Unreal Tournament 3 может быть объяснено особенностью самого теста: в отличие от других игровых бенчмарков, бенчмарк для UT3 не воспроизводит заранее записанную демку, а имитирует реальную игру (CTF), с той только разницей, что всеми игроками на поле управляет компьютер. Потенциально, это действительно гораздо более сложная для процессора задача т.к. управление 8-ю игроками в режиме реального времени создаст хорошую вычислительную нагрузку даже при самом примитивном «искусственном интеллекте». Однако в целом всё плохо (или хорошо - зависит от того, с какой стороны смотреть): игровая группа демонстрирует самую низкую процессорозависимость, являясь по данному параметру «лидером наоборот» сегодняшнего тестирования.

* - мы привели результаты Left 4 Dead в таблице и на диаграмме т.к. они оказались самыми показательными с точки зрения зависимости от процессора, но не стоит забывать о том, что данный бенчмарк входит в группу «опциональных тестов», и, соответственно, не влияет на общий балл игровой группы.
Заключение

Карты на стол!

Что ж, настала пора наконец-таки дать объяснения последнему неразгаданному феномену: массовым случаям сверхлинейного роста производительности при переходе от частоты 2,26 ГГц к частоте 2,66 ГГц. Быть может, мы кому-то покажемся несколько занудными:), однако давайте все вместе «станцуем от печки» - честное слово, так интереснее.

Итак: что нужно для того, чтобы на одном из «переходов» образовался сверхлинейный прирост производительности? Вопрос кажется дурацким (ибо ответ в первом приближении: «чтобы следующий по частоте процессор был сверхлинейно быстрее»), однако подождите делать преждевременные выводы: быстрее - отнюдь не единственный вариант. Если представить нашу гипотетическую идеальную производительность как функцию от частоты, т.е. быстродействие (S) = частота (F) * некий коэффициент (K), то сверхлинейный рост невозможен. Что нужно для того, чтобы он появился? Для этого нужно, чтобы следующему по частоте процессору спустился с небес некий бонус (+B) или... чтобы предыдущий процессор получил бонус отрицательный (-B) т.е. оказался бы медленнее, чем ему положено согласно его частоты. Итак, чувствуете, как изменилась наша задача? Теперь нам нужно найти ответ не на один вопрос, а на один из двух: либо на вопрос «почему 2,66 ГГц процессор такой быстрый?», либо «почему 2,26 ГГц такой медленный?» При этом также нельзя исключать того, что существуют ответы на оба вопроса*.

* - Вы правильно догадались: так оно на самом деле и есть. :)

Искали бы мы эти ответы, наверное, намного дольше, если бы не один счастливый факт: мы-то чётко понимали, что де-факто, физически, процессор был один и тот же . Изменялся только коэффициент умножения, с помощью которого получается частота работы ядра. Значит, если отбросить магию маленьких зелёных человечков, ответ может быть один: дело именно в коэффициенте умножения. Впрочем, это ещё не ответ. Это лишь область для поисков.

Ещё одно наше везение состояло в том, что коэффициенты умножения «быстрого» и «медленного» процессора уж очень сильно разнятся: 17 и 20. Первое число - вообще простое, т.е. делится только само на себя и на единицу. Второе - делится на 2, 4, 5 и 10. И вот как раз на цифре «4» прозвучала та самая «эврика!» - ну да, конечно же - коэффициент умножения внеядра во всех случаях был равен 16, а это число тоже делится на 4!

Подводя итоги: видимо, расходы на согласование между ядром и внеядром, когда они работают на разных частотах - действительно существенный фактор, способный влиять в том числе на быстродействие процессора. Соотношение между коэффициентами умножения ядра и внеядра в случае с частотой первого 2,26 ГГц, довольно «неудобное» - 17:16. И ввиду того, что 17 - простое число, сократить эту дробь невозможно. В случае с 2,66 ГГц процессором, соотношение составляет 20:16, что легко сокращается до 5:4. Судя по всему, универсальное правило «чем сильнее асинхронность - тем хуже», работает и в данном случае. Косвенным подтверждением этого служит вторая диаграмма, где сравнивается идеальный и реальный средний прирост производительности: чётко видно, что 2,66 ГГц процессор намного ближе к своему идеалу, чем 2,26 ГГц.

Разумеется, мы не можем сейчас настаивать на том, что изложенная гипотеза является доказанной: выявленный феномен требует дополнительного исследования, вполне возможно, с привлечением низкоуровневых тестов, которые в подобных случаях обеспечивают бо льшую точность и больший разброс, нежели тесты с помощью реального ПО. Однако в рамках ныне проведенного исследования, гипотеза выглядит вполне непротиворечиво, и, к тому же, никакого другого объяснения вышеизложенным фактам, мы придумать пока не смогли.

Что же касается двух случаев сверхлинейного роста при переходе границы 2,66 / 3,06 ГГц - то их нам, увы, остаётся объявить «артефактами» данного тестирования т.к. с логической точки зрения они необъяснимы, а количество случаев настолько невелико, что списать всё на случайность ещё можно.

Конечно, несколько неожиданно наблюдать настолько стремительно возрастающую разницу между идеальным (под идеальным мы подразумеваем соответствующий росту частоты) приростом производительности и реальным уже на частоте 3,06 ГГц. Фактически, это означает, что даже в лучшем случае производительность гипотетического Core i7 3,46 ГГц будет равна примерно 156 баллов по нашей шкале (3,46 умножить на предполагаемую эффективность порядка 45 баллов за гигагерц) - и это ещё достаточно оптимистичный прогноз. С другой стороны - может, увеличение объёма кэша третьего уровня позволит поднять общую эффективность системы, так что бить тревогу ещё рановато. Собственно, это косвенно подтверждается достаточно спокойной позицией Intel, которая отнюдь не торопится с анонсами новых процессорных архитектур, предпочитая «подтягивать хвосты» в других областях - например, в области графических решений и их интеграции с CPU. Поэтому в целом, мы бы сказали, ничего удивительного нам сегодняшнее тестирование не открыло: да, как правило, в рамках одной и той же архитектуры, чем больше частота - тем меньше эффективность. Это давно всем известно, и блестяще подтвердилось практическими результатами.

Однако раз уж мы провели такое полномасштабное тестирование, грех было бы останавливаться на одной только процессорной тематике, не затронув сами программы. Давайте посмотрим: а какие группы ПО из используемой методики как реагируют на увеличение частоты работы процессорного ядра? Для начала, возьмём разницу между двумя крайними точками: 1,86 ГГц и 3,06 ГГц.

Распределение вполне ожидаемое: научные и инженерные вычисления, рендеринг, архивация, кодирование видео. Несколько правда, странно наличие в нижних строчках группы кодирования аудио. Самая нижняя позиция игровой подгруппы, наоборот, лишь подтверждает правильность нашего выбора опций для тестирования: с нормальными графическими настройками производительность в играх и не должна сильно зависеть от процессора.

А теперь давайте посмотрим на тот же рейтинг, но уже с точки зрения разницы между двумя последними позициями: 2,66 ГГц и 3,06 ГГц. Эта диаграмма позволит нам ответить на вопрос: какие приложения сохраняют хорошую масштабируемость даже на самом верхнем пределе частот?

Первый сюрприз связан как раз с первым же местом: лучше всего масштабируются на верхних частотах, как оказывается, Java-приложения. Больше сюрпризов не наблюдается: все те же рендеринг, кодирование видео, научные и инженерные расчёты. В целом, можно констатировать, что никаких расхождений с нашими интуитивными ощущениями две последних диаграммы не вызывают: даже не видя результатов, руководствуясь одними только логикой и здравым смыслом, пятёрку лидеров любой из редакторов процессорного раздела назвал бы легко.

Подводя итоги, можно продолжить мысль, высказанную абзацем выше: несмотря на отсутствие откровений, тестирование получилось весьма полезное - именно ввиду теоретической предсказуемости результатов. Нет ничего лучше, чем время от времени, обстоятельно, с толком, с расстановкой, экспериментально убедиться в том, что старые добрые, чисто теоретическим путём выведенные закономерности, до сих пор действуют. А то иной раз задумаешься: а вдруг их уже отменили, а мы до сих пор по старинке рассуждаем? :)

Вам когда-нибудь было интересно как влияет частота процессора и количество его ядер на скорость работы антивирусных средств? В этом тестировании учавствуют 12 продуктов от 6 производителей.

1) ESET NOD32 Antivirus 4;
2) ESET NOD32 Smart Security 4;
3) Dr.Web Antivirus 6.0;
4) Dr.Web Security Space 6.0;
5) Kaspersky Antivirus 2011;
6) Kaspersky Internet Security 2011;
7) Avast! Pro Antivirus 6.0.1;
8) Avast! Internet Security 6.0.1;
9) AVG Anti-Virus 2011;
10) AVG Internet Security 2011;
11) Panda Antivirus Pro 2011;
12) Panda Global Protection 2011.

Для проведения тестирования необходим мощный компьютер с возможностью настройки тактовой частоты и возможностью отключения процессорных ядер. За номинальную конфигурацию я взял ПК на базе процессора Intel Core i7 930 с тактовой частотой 4400 MHz. Такую высокую тактовую частоту я выбрал для того, чтобы, насколько это возможно, увеличить производительность системы во избежание случая, когда все антивирусы покажут одинаковые результаты из-за нехватки ресурсов системы. Оперативная память, объём которой составляет 6 Гб, при такой частоте процессора функционирует на частоте 1600 MHz. Тактовая частота процессора вычисляется как произведение частоты шины на коэффициент умножения. Для тестирования частота будет изменяться только с помощью множителя. Это сделано для того, чтобы не было разницы из-за шины. Чем она выше – тем больше производительность. А при изменении множителя меняется только результирующая частота процессора, что и требуется для сравнения (ведь модели процессоров одной линейки отличаются, в основном, только множителем).

Операционная система – русская версия Windows 7 64-bit с предустановленным пакетом обновлений Service Pack 1. После установки ОС, произведена установки драйверов видеокарты. Драйвера на материнскую плату вшиты в дистрибутив Windows 7. Затем произведена установка дополнительного программного обеспечения для проведения тестирования: WinRar 4.0, MS Office 2003 SP3, Adobe Photoshop CS5 и пакет системных утилит WinSDK. После установки ПО, компьютер трижды перезагружается и выполняется дефрагментация жёсткого диска. После этого проводится тестирование ОС без установленных антивирусных программ:

1) Замеряется скорость загрузки ОС с помощью команды «xbootmgr -trace boot», которая корректно завершает работу сеанса, перегружает компьютер и выводит подробные графики после полной загрузки ОС. Эта команда доступна только после установки пакета WinSDK.
2) Замеряем время открытия текстового файла в MS Office. Для того чтобы разница была видна между «чистой» ОС и с установленным антивирусом, я взял файл формата *doc, размером 4.92 Mb, содержащим 1101 страницу и 1 847 739 знаков с пробелами.
3) Замеряем время открытия картинки в Adobe Photoshop CS5. Размер картинки – 95 Mb, разрешение – 16128х16095 пикселей.
4) Замеряем время распаковки архив с помощью WinRar. Этот тест симулирует установку приложений, потому что содержимое архива – библиотеки, исполняемые и текстовые файлы. Содержимое архива – папка system32, скопированная из только что установленной ОС Windows 7. Архив содержит папку, состоящую из 10095 элементов и которая занимает 2.48 Gb дискового пространства. Сам архив занимает 829 Mb (сжатие до 32%).
5) Замеряем время копирования папки из одного раздела в другой. Папка содержит в себе несколько установленных игр, общим объёмом 15 Gb. Эта папка содержит в сумме 167 вложенных папок. Общее количество файлов равно 5099.
6) Замеряем время сканирования папки объёмом 17.5 Gb, содержащей в сумме 15200 разных файлов (библиотеки, исполняемые, архивы и пр.).
7) Все пункты повторяются при тестировании системы с одним и с двумя активированными процессорными ядрами. Затем те же действия производятся с четырьмя активированными ядрами, но с разными тактовыми частотами - 2.4 и 3.6 GHz.
8) Каждым антивирусом сканируется архив, содержащий 66713 сигнатур. Этот тест проводится на номинальной конфигурации системы.

Перед тестированием каждого антивируса производится переустановка ОС с быстрым форматированием жёсткого диска. Снова устанавливаются все необходимые программы, проводятся перезагрузки и дефрагментация. Для корректного тестирования антивирусов на разных частотах и количествах ядер процессора, необходимо, чтобы количество копий тестируемых файлов было равно количеству тестов. И все эти файлы должны находиться в разных папках. Это необходимо для того, чтобы антивирус проверял открываемый файл или распаковывал архив, считая его новым, а не уже проверенным. Если же антивирус видит, что этот файл уже был проверен ранее, то он его попросту пропустит, чем сведёт результаты тестирования на нет. Подключение к интернету осуществлено посредством Wi-Fi. Скорость подключения – 15 Мбит/сек.

Результаты

Время загрузки операционной системы


images.netbynet.ru/imgs/d58499aaa43bebd18d3aaf2691e4b781.PNG

Время открытия документа


images.netbynet.ru/imgs/f4820220419226875e06fed15a38c494.PNG

Время открытия изображения


images.netbynet.ru/imgs/6659f3d77435336a21193ba1adfb775d.PNG

Время распаковки архива


images.netbynet.ru/imgs/6aa4735f77bfa4f10444e666cea59610.PNG

Время копирования папки с файлами



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png