На этот раз я решил сделать автомат, который автоматически включает светодиодное освещение в садовой беседке. Поскольку поблизости нет розетки, а постоянное протягивание удлинителя достаточно утомительное занятие, я решил запитать светодиоды от аккумулятора с подзарядкой от солнечных элементов.

Ранее был описан очень похожий , который освещает стеклянную полку в шкафу. Используя этот драйвер, возникла бы проблема, поскольку для освещения беседки нам нужно больше света, чем для освещения стеклянной полки. Так же, применение более мощного источника света будет быстрее разряжать аккумулятор, который может выйти из строя в результате глубокой разрядки элементов в батарее.

Чтобы этого не допустить, я решил создать простой драйвер с защитой от слишком глубокого разряда батареи на основе . В свою очередь, солнечные элементы также служат в качестве датчика освещенности, что значительно упростило всю схему.

Печатная плата имеет размеры 40мм на 45мм. Кроме того, добавлены два монтажных отверстия. Все устройство питается от трех Ni-MH аккумуляторов (1,2В/1000мАч). Для зарядки используется солнечная батарея с номинальным напряжением 5 вольт и максимальным выходным током до 80 мА. Солнечная батарея заряжает аккумуляторы через выпрямительный диод D1. Схема не имеет защиты от перезаряда батареи из-за того, что в такой конфигурации перезарядка просто невозможна.

Полностью заряженный аккумулятор должен иметь напряжение около 4,2-4,35 В Солнечная батарея вырабатывает напряжение 5В, но происходит падение на выпрямительном диоде в районе 0,7 В, что дает нам напряжение 4,3 В. Транзистор Q1 отвечает за включение освещения в ночное время и отключение его днем. База этого транзистора подключена через резистор 2,2 кОм к положительному полюсу солнечной батареи.

Когда солнечная батарея не вырабатывает электроэнергию, или она слишком маленькая, транзистор Q1 заперт. Тогда ток с вывода («REF») стабилитрона TL431 будет течь только через резистор R4, который создает делитель напряжения вместе с резисторами R2 и R3. Транзистор Q2 управляет нагрузкой в виде светодиодов. Чтобы схема работала правильно, мы не можем игнорировать резистор R5, задачей которого является подтягивание базы транзистора Q2 к плюсу источника питания.

По расчетам для имеющегося напряжения выходит, что резистор должен иметь сопротивление 100 Ом. С таким сопротивлением схема переключается очень быстро. Но проблема состоит в том, что этот резистор имеет достаточно маленькое значение, и через него течет очень большой ток. Общий ток потребления составляет около 23 мА! Я решил этот резистор заменить на резистор большего значения. В итоге я поставил резистор номиналом 1 кОм. Теперь отключение нагрузки не такое быстрое, но ток потребления сократился до 8mA.

Конечно, текущее значения 8 мА потребляется только тогда, когда солнечная батарея находится в темном месте — то есть, только в ночное время, когда горят светодиоды. И это такой же максимальный ток (8 мА), который поступает от батареи при напряжении 4,2 В. Напряжение отключения нагрузки я поставил на 2,9 В. Предельное напряжение для одной ячейки 0,9 В, что при подключении последовательно трех дает нам 2,7 В, и следовательно, у нас есть еще в запасе 0,2 В.

Схема после отключения нагрузки (т.е. при 2,9 В и ниже), потребляет только 50 мкА. Такой же ток будет, когда солнечная батарея заряжает аккумуляторы. Устройство очень отзывчиво на свет, но не на столько, чтобы уличное освещение мешало бы определить сумерки. С момента обнаружения заката до включения светодиодов на 100% проходит примерно 2 мин.

Удалив из системы транзистор Q1, резистор R1 и выпрямительный диод D1 получаем простую схему защиты аккумулятора от глубокого разряда. Подобная схема может использоваться для отключения Li-Ion или Li-Pol аккумулятора от зарядки. Ее можно использовать, например, в фонарике. Существует также возможность создания подобной защиты и на другие напряжения, для этого нужно рассчитать делитель напряжения. Формулы и пример расчета есть

Контроллер – электронный прибор, отвечающий за контроль и регулировку заряда аккумуляторной батареи. Различные модели отличаются по конструкции и режиму работы.

Виды контроллеров

On/Off контроллер

Наиболее дешевый аппарат. Отличительная черта данного типа аппарата в том, что при достижении определённого максимального показателя напряжения аппарат отсоединяет блок солнечных батарей от аккумуляторов, и зарядка приостанавливается. Контроллер этого типа применяются редко, т. к. при их использовании происходит неполный заряд батарей, что плохо отражается на их состоянии, и в продолжительной перспективе, приводит к полному выходу из строя. Единственный плюс у данного типа – низкая стоимость.

ШИМ (PWM) – контроллер

В основу работы данного типа электронного устройства заложена широтно-импульсная модуляция. В процессе эксплуатации контроллер этого типа, прекратив заряжать аккумуляторную батарею, не отключает солнечные панели, что позволяет полностью зарядить АКБ. Как правило, такие аппараты используются в установках небольшой мощности, до 2,0 кВт.

МРРТ – контроллер

Это наиболее дорогие по стоимости устройства. Работа приборов данного типа основана на управлении пиками, выходящими на максимальный энергетический уровень. Данный тип контроллера более эффективен при использовании и сокращает сроки окупаемости солнечных электрических станций.

Какие параметры контроллера необходимо учитывать

Чтобы определить критерии при выборе контроллера, необходимо сформулировать функции, которые он выполняет, к ним можно отнести следующие:

  • Обеспечение заряда аккумуляторной батареи;
  • Отключение аккумуляторной батареи при полном заряде в автоматическом режиме;
  • Отключение нагрузок при минимальном заряде в автоматическом режиме;
  • Подключение нагрузок при восстановлении заряда;
  • Подключение фотоэлементов при заряде аккумуляторной батареи в автоматическом режиме.

Определившись с функциями, за выполнение которых отвечает контроллер, можно сформулировать параметры, которые обязательно учитывают при выборе устройства.

Основных параметров два, это:


Современные модели контроллеров оснащены разнообразными защитными механизмами и возможностью работы в разных режимах. Наличие подобных элементов в конструкции того или иного прибора не влияет на основные параметры при его выборе, но дополнительно стимулирует приобретение той или иной модели.

К таким элементам защиты можно отнести:

  • Защита от подключения неправильной полярностью;
  • Защита на входе от случаев короткого замыкания;
  • Защита во время нагрузок от короткого замыкания;
  • Защита от перегревов;
  • Защита на входе от высоких нагрузок напряжения;
  • Защита от ударов молний;
  • Схемы предотвращения ночного разряжения аккумуляторных батарей;
  • Электронные предохранители.

Как выбрать контроллер для заряда солнечных батарей

Чтобы выбрать необходимый контроллер, необходимо определиться, какие солнечные панели установлены,
или планируется установить. Далее необходимо рассчитать их мощность, определить, на какое рабочее напряжение они рассчитаны, уточнить прочие параметры формируемой системы.

Затем изучают параметры, предъявляемые к контроллеру, и увязывают их с характеристиками системы, в которой будет работать устройство. Когда технические величины определены и отвечают предъявляемым к ним требованиям, необходимо выбрать страну и фирму производителя устройства, решить из какого ценового диапазона следует выбрать котроллер. Определиться с местом приобретения и купить выбранный аппарат.

Как сделать контроллер своими руками

При наличии знаний в области электроники и умения обращаться с паяльником, можно изготовить контроллер заряда из подручных материалов самостоятельно. Конечно, это будет простейший из видов контроллеров, так называемый тип «On/Off» контроллеров.

В приведенной внизу схеме с помощью электронных компонентов формируется сигнал, получаемый от солнечных панелей. Транзисторы, установленные в схеме, управляют работой последней, резисторы регулируют параметры переключения режимов работы, а микросхемы выполняют роль операционного усилителя и регулятора параметров.

Хотя из приведенной схемы видно, что изготовить подобный элемент системы несложно, к тому же всегда схему можно дополнить и доработать, но все же несмотря на очевидную простоту, использовать контроллеры, изготовленные подручными средствами самостоятельно не рекомендуется, дабы избежать неблагоприятных последствий, таких как вывод из строя аккумуляторных батарей.

Можно ли обойтись без контроллера для солнечной батареи

Иногда при самостоятельной разработке солнечной электрической станции возникает вопрос, а можно ли обойтись без контроллера? Для ответа на поставленный вопрос необходимо вспомнить о роли данного устройства в системе преобразования солнечной энергии в электрическую. Если сформулировать коротко, то — контроллер управляет процессом заряда аккумуляторных батарей.

При отсутствии данного элемента схемы управления, возможно закипание электролита в АКБ, что в свою очередь приведет к повреждению аккумуляторной батареи, стоимость которой значительно превышает стоимость контроллера. Из этого делаем вывод, что работа солнечной электрической станции в автоматическом режиме без контроллера недопустима.

Единственный случай, когда можно исключить контроллер из схемы управления — это не продолжительное по времени использование солнечных панелей. В этом случае, в цепь зарядки АКБ, устанавливается вольтметр и в моменты, когда заряд достигает пиковых значений, аккумуляторные батареи в ручном режиме отключают. После прохождения пиковых нагрузок, цепь зарядки, опять же в ручном режиме, включается в работу.

В настоящее время изготовлением разнообразных электронных устройств занимается большое количество отечественных и зарубежных компаний. Стоимость контроллеров разнообразных типов колеблется от 5,0 до 10,0 тысяч рублей, поэтому нет необходимости изготавливать такое сложное электронное устройство самому или вообще исключать его из схемы управления солнечной электростанции.

Получив экономию в малом, можно потерять больше при выходе из строя АКБ, к тому же работа в автоматическом режиме, которую осуществляет прибор, изготовленный профессионалами, позволяет экономить время владельца, а в современном мире, когда все быстро течет и происходит, это немаловажный фактор. Однако каждый для себя делает индивидуальный выбор, благо он, это выбор, есть всегда.

  • Благодаря тому, что человек научился преобразовывать солнечное излучение в электроэнергию, мы имеем возможность обеспечивать наши дома электричеством с помощью солнца без вреда для окружающей среды. Частный дом с множеством различных приборов и систем, которые потребляют электричество, требует сооружения целой солнечной электростанции. Она комплектуется с помощью таких приборов, как контроллер, и, конечно же, солнечные панели. Знакомимся с подробной информацией о том, для чего в этой системе нужен контроллер, с принципом его действия, а также с видами этого прибора, и узнаем, как выбрать контроллер заряда аккумуляторов для солнечной батареи.

    Предназначение и принцип работы

    Контроллер − это электронный прибор, который, как следует из названия, контролирует уровни заряда и разряда аккумуляторов для солнечных батарей. Для лучшего представления о сущности этого устройства рассмотрим особенности работы тепловых панелей.

    Солнечный свет попадает на поверхность батареи, где начинается процесс его преобразования в электрический ток при помощи фотоэлементов. От ток постоянного значения поступает в аккумулятор. Инвертор меняет постоянный ток на переменный перед распределением последнего между потребителями электричества. Контроллер заряда солнечной батареи предотвращает полный разряд и перезаряд аккумуляторов.

    Следить за уровнем заряда очень важно по нескольким причинам.

    Во-первых, должны соблюдаться максимальные и минимальные значения заряда, которые бывают разными и зависят от типа аккумулятора . Это существенно продлит срок эксплуатации аккумуляторной батареи (АКБ), а в отдельных случаях позволит избежать ее поломки. Перезарядка некоторых видов АКБ может привести к выделению вредных веществ или даже ко взрыву устройства.

    Во-вторых, многочисленные модели аккумуляторов работают с разными показателями напряжения. Контроллер солнечных батарей устанавливает необходимый уровень, с которым может работать конкретный прибор.

    Помимо этого, аккумулятор отключает подачу тока от солнечной батареи к предельно заряженному накопителю, а максимально разряженное устройство отключает от потребителей электричества.

    В общем, это устройство выполняет широкий спектр функций:

    1. Обеспечение многоступенчатого заряда аккумулятора.
    2. Отключение и подключение приборов в автоматическом режиме от источников энергии или от потребителей в зависимости от уровня заряда.

    Таким образом, контроллер заряда отслеживает условия работы аккумуляторов, страхуя их от простоя, перезарядки и излишней нагрузки. Эти функции продлевают время эксплуатации приборов.

    Виды приборов

    Контроллеры для солнечных батарей представлены в нескольких видах:

    • Устройства On/Off.
    • PWM контроллеры.
    • MPPT контроллеры.
    • Устройства гибридного типа.
    • Самодельные контроллеры.

    Познакомимся с каждым из этих видов. На сегодняшний день самыми популярными считаются PWM контроллер и контроллер MPPT.

    Устройства On/Off

    Такие контроллеры заряда аккумуляторов являются самыми простыми из всех моделей, которые представлены на современном рынке. Их функциональность весьма ограничена. Устройства этого типа отключают процесс зарядки аккумулятора при достижении максимального значения напряжения. Таким образом, предотвращается перегрев и перезарядка АКБ.

    Важно подчеркнуть, что контроллер такого типа не сможет обеспечить 100% уровень заряда АКБ . Этот нюанс объясняется тем, что отключение происходит по достижении максимального значения тока. На момент обесточивания уровень заряда может находиться в пределах от 70 до 90%. Чтобы загрузить аккумуляторную батарею полностью, потребуется еще несколько часов. Неполная зарядка неблагоприятно сказывается на функционировании прибора и уменьшает срок его эксплуатации.

    Контроллеры типа PWM

    Контроллер уровня заряда PWM (Pulse-Width Modulation) по-другому называется ШИМ. ШИМ контроллер − устройство, принцип действия которого основан на широтно-импульсной модуляции тока. Прибор разработан с целью устранения проблемы неполной зарядки. 100% уровень достигается благодаря тому, что механизм при обнаружении максимального значения тока, понижает его продлевая таким образом зарядку аккумулятора.

    Описанное устройство предотвращает перегрев аккумуляторной батареи, способствует повышению принятия заряда. В общем, хорошо сказывается на ее состоянии. Прибор этого типа считается весьма эффективным, но MPPT контроллер, если сравнивать его принцип действия с PWM, является более предпочтительным вариантом по ряду функциональных возможностей.

    MPPT контроллеры

    МРРТ контроллер (Maximum Power Point Tracking) − устройство, которое отслеживает максимальный предел мощности заряда. С помощью сложного алгоритма устройство этого типа следит за показаниями тока и напряжения системы энергоснабжения, определяя оптимальное соотношение параметров для обеспечения максимальной продуктивности всей солнечной электростанции.

    Без преувеличения можно утверждать, что именно MPPT контроллер является наиболее усовершенствованной и эффективной моделью по сравнению с другими. Для сравнения: MPPT контроллер повышает продуктивность системы энергообеспечения до 35% относительно PWM .

    На сегодняшний день MPPT контроллер считается более подходящим для систем, в которых солнечные панели занимают значительные площади. Но высокая стоимость приборов данного типа вводит определенные ограничения при его использовании. Поэтому PWM модель является доступной для эксплуатации в системах энергоснабжения частных домов.

    Устройства гибридного типа

    Используются в случае энергоснабжения с помощью комбинирования источников энергии, например, ветра и солнца. В основу разработки гибридного прибора положен п ринцип работы МРРТ и PWM контроллеров . Единственное, чем он отличается от других моделей, − это вольтамперные параметры.

    Главная цель моделей гибридного типа состоит в своеобразном выравнивании нагрузки на аккумуляторы. Эта проблема возникает в результате работы ветрогенераторов, которые производят ток непостоянной величины. При этом аккумуляторы работают в усиленном режиме, который значительно уменьшает срок эксплуатации.

    Самодельные приборы

    В некоторых случаях, при наличии соответствующего опыта и навыков, собирают контроллер аккумуляторов для солнечной панели самостоятельно. Но, скорее всего, такой прибор будет значительно уступать в плане функциональности и эффективности. Устройства подобного типа подходят только для очень маленькой системы энергообеспечения, которая работает с низкой мощностью.

    Для изготовления контроллера заряда аккумуляторов вам понадобится его схема. Погрешность работы самодельного контроллера должна позволять фиксировать перепады измеряемых величин с точностью до одной десятой.

    Способы подключения устройств

    Контроллер для солнечных батарей может быть как встроенным в инвертор или блок питания, так и существовать самостоятельным прибором.

    При выборе метода подключения всех компонентов системы следует учитывать соотношение значений. Например, напряжение от солнечных батарей не должно превышать максимальный показатель, с которым может работать контроллер. Перед подключением прибора в схему для него следует выбрать сухое место, придерживаясь при этом правил противопожарной безопасности. Ниже приводится описание способов подключения самых распространенных типов контроллеров: PWM и MPPT.

    PWM

    При подключении PWM контроллеров требуется соблюдать четко определенную последовательность:

    1. Провода аккумуляторной батареи соединить на клеммах контроллера заряда солнечных батарей.
    2. Включить защитный предохранитель возле провода с положительной полярностью.
    3. Подсоединить выходы солнечных батарей к контактам контроллера.
    4. Подключение лампы необходимого напряжения 12 вольт (стандартное обычное значение) к выводам нагрузки контроллера.

    При этих действиях важно подключать приборы со строжайшим соблюдением маркировок клемм и полярности. Нарушение последовательности подключения приборов может привести к их поломке. Инвертор нельзя подключать к клеммам контроллера. Он должен присоединяться к клеммам аккумуляторной батареи.

    MPPT

    МРРТ контроллер, являясь устройством более мощным, технологически подключается немного по-другому. Хотя общие требования, касающиеся физической установки, соблюдаются в соответствии с вышеописанной схемой.

    Кабели, с помощью которых МРРТ контроллер соединяется с другими приборами, оснащены медными обжимными наконечниками. Клеммы отрицательной полярности, соединяемые с контроллером, следует оборудовать переходниками с выключателями и предохранителями. Это позволит вам предотвратить потерю энергии, а также обеспечит безопасное использование системы. Важно проверить соответствие значения напряжения на солнечных батареях и эти же показатели у устройства.

    Перед подключением приборов в систему необходимо перевести выключатели клемм в отключенное состояние и вынуть предохранители. Процесс происходит в несколько этапов:

    1. Соединить клеммы контроллера и аккумуляторной батареи.
    2. Соединить солнечные батареи с контроллером.
    3. Подключить заземление.
    4. Установить на контроллере датчик температуры.

    Все это должно делаться в соответствии с маркировками клемм и соблюдением полярностей. После того как установка завершена, переводим выключатель в состояние «включено» и вставляем предохранители. Если установка выполнена правильно, на экране должны высветиться показатели заряда аккумулятора.

    Критерии выбора контроллера

    Контроллер процесса зарядки аккумуляторов для солнечных панелей является очень важным элементом системы энергоснабжения. Разнообразный ассортимент моделей может немного озадачить при выборе устройства.

    Подобрать подходящую модель проще, если при покупке взять во внимание следующие критерии:

    1. Показатель входного напряжения. Данное значение выбранного прибора должно быть выше примерно на 20% показателей напряжения батарей, которые генерируют преобразователи солнечного света в ток.
    2. Значение общей мощности батарей. Оно не должно быть выше показателя тока на выходе.

    Современные модели имеют ряд дополнительных функций, предназначенных для повышения безопасности при использовании регуляторов процесса зарядки. Устройства управления процессами зарядки-разрядки могут иметь защиту от воздействия погодных условий, излишней нагрузки, коротких замыканий, перегрева, а также от неправильного подключения (это касается несоблюдения полярности). Поэтому выбирать прибор следует не только в зависимости от описанных критериев, но и с учетом функций защиты, которые лучшим образом обеспечат безопасную эксплуатацию устройства.

    Здравствуйте. Попробую я сегодня рассказать про достаточно маломощный (10А ток заряда и разряда) контроллер заряда аккумуляторной батареи от солнечных панелей.
    В обзоре подробные фото контроллера внутри и снаружи, а также тестирование…
    Итак, всем известно, что солнечные панели преобразовывают световое излучение в электрический ток, таким образом в дневное время можно получать электрическую энергию от Солнца. Для того, чтобы сохранить эту энергию для использования в тёмное время суток, солнечную силовую установку необходимо оборудовать аккумулятором, который в светлое время суток будет заряжаться, а в тёмное отдавать энергию потребителям.
    Но для чего же нужен контроллер заряда? И действительно, достаточно просто соединить солнечную батарею с аккумулятором, и при наличии хоть какого-то света, а ещё лучше - Солнца, от солнечной батареи пойдет зарядный ток в аккумулятор и без использования контроллера. Однако у каждого аккумулятора есть предельное значение напряжения, превышение которого ведёт к перезаряду, кипению электролита и в конечном итоге к выходу из строя аккумулятора. То же самое можно сказать и о цикле разряда. Также нельзя разряжать аккумуляторы ниже определённого для каждого типа аккумулятора напряжения. Вот для этих целей и служит контроллер заряда, который следит за правильным зарядом и разрядом аккумулятора, а также имеет и некоторые дополнительные функции. Бывают контроллеры релейного типа, которые просто подключают и отключают солнечную панель от аккумулятора при достижении максимального напряжения, а также бывают контроллеры с ШИМ модуляцией, которые могут регулировать напряжение выдаваемое на аккумулятор. Вторые предпочтительнее, т.к. они более полно заряжают аккумулятор.
    В данном случае расскажу о таком контроллере с ШИМ. В виду его небольшой мощности, основное его предназначение - управление автономным освещением. Но обо всём по порядку.
    Комплект состоит из самого контроллера и инструкции на английском языке:








    Могу сказать, что подобные инструкции читаю редко, но в эту заглянул.
    Общий вид и размеры:






    Размеры продублирую цифрами: 14х9х3 см (приблизительно);
    Корпус сделан из пластика, с 4 «ушами» для крепления, на передней панели присутствуют:
    1. Группа из 3 светодиодов (слева сверху). Левый зеленый показывает наличие тока от солнечной панели, средний 2-х цветный индицирует состояние заряда батареи (красный - батарея разряжена, зелёный - батарея заряжена) и правый жёлтый - активация нагрузки;
    2. 7 сегментный с точкой индикатор красного цвета для индикации выбранного режима работы;
    3. Кнопка под 7 сегментным индикатором для выбора нужного режима работы;
    4. Винтовые клеммники для подключения солнечной панели, аккумуляторной батареи, нагрузки.
    На обратной стороне корпуса присутствует металлическая пластина, крепящаяся к корпусу 4-мя саморезами, служащая радиатором для силовых транзисторов.
    Заглянем внутрь:








    Со схемотехнической точки зрения ничего говорить не буду, для интересующихся на фотографиях видны наименования микросхем. Отмечу лишь достаточно аккуратный монтаж и возможность увеличения мощности прибора путём добавления силовых транзисторов на отсутствующие места, естественно делать это нужно с умом.
    Перейдём к тестированию, для этого дополнительно к обозреваемому контроллеру нам понадобятся элементы солнечной панели (о них расскажу как-нибудь в другой раз), кусок ламината для крепления этих элементов, 12 вольтовый свинцовый аккумулятор, провода, термоклей, припой, флюс, мультиметр, регулируемый источник питания постоянного тока, 12 вольтовая светодиодная лента играющая роль нагрузки:








    Выходные напряжения каждого солнечного элемента используемых для тестирования, судя по ТХ производителя, около 6 вольт, поэтому нам необходимо соединить последовательно 3 таких элемента и закрепить эти элементы и провода с помощью термоклея на куске ламината.
    Проверяем что получилось:




    Напряжение 17 вольт, ток КЗ всего 7 мА, с напряжением всё нормально, но с током не густо, хотя отмечу, элементы в тени. Откроем шторы:




    Напряжение 20 вольт, ток КЗ около 40 мА, уже что-то.
    Собираем тестовый макет:


    Светодиодная лента не светится, что соответствует выбранному 17 режиму (см.инструкцию), при котором нагрузка включается только при отсутствии тока от солнечной панели, что соответствует тёмному времени суток. Мультиметр показывает 27 мА зарядного тока.
    На следующем видео демонстрация работы автоматического освещения при смене дня и ночи (как это так и следующее видео лучше смотреть на весь экран, чтобы подсказки корректно отображались):


    Для дальнейших экспериментов подключим вместо аккумуляторной батареи регулируемый источник питания постоянного тока и первым экспериментом будет измерение тока покоя прибора. Т.е. какой ток потребляет контроллер заряда без солнечной панели и нагрузки:


    Оказалось всего 5 мА, что сравнимо с током саморазряда аккумулятора.
    На следующем видео я постарался продемонстрировать как ведёт себя контроллер заряда при изменении напряжения на аккумуляторе при затенённых солнечных элементах:


    Немного слов о режимах работы:
    0 - нагрузка включена постоянно (этот режим можно использовать для общего применения);
    16 - включение/выключение нагрузки осуществляется кнопкой управления;
    17 - нагрузка включена в темное время суток;
    01...15 - включение нагрузки после заката на столько часов, какой режим выбран (1...15)
    Что еще можно сказать? Контроллер вполне работоспособен в своей области применения. Одной цепочки солнечных элементов явно не достаточно, необходимо впаралель добавить еще несколько, но важно не забывать развязывать их диодами, лучше использовать диоды Шоттки (прямое падение напряжения меньше).
    Вот вроде бы и всё, если будут вопросы, спрашивайте в комментариях, постараюсь ответить.

    P.S. Да, чуть не забыл, товар предоставлен бесплатно для тестирования.

    Планирую купить +51 Добавить в избранное Обзор понравился +26 +59

    Данный контроллер заряда солнечной батареи предназначен для зарядки свинцово-кислотного аккумулятора от солнечной панели. Эта схема подходит для солнечных батарей мощностью от 15 ватт и содержит световой индикатор процесса работы контроллера.

    Солнечная батарея представляет собой непрерывный источник напряжения, которое поступает на вход контроллера, к выходу же контроллера подключается аккумулятор. В результате этого не происходит перезаряда аккумуляторной батареи и соответственно продлевается срок ее службы.

    Описание работы контроллера заряда солнечной батареи

    Напряжение от солнечной батареи сначала проходит через диод D6 (желательно диод Шоттки), который препятствует разрядку аккумулятора обратно через панель, когда солнце не светит. После диода D6 идет классической линейный регулятор на основе LM317. Выходное напряжение регулятора определяется соотношением сопротивлений резисторов R20 и R1.

    Напряжение на выходе должно быть в районе 13,6…13,8 вольт. Точное значение можно выставить подбором сопротивления R19, значение которого определяется опытным путем. Конкретно в данном случае его сопротивление (R19) равнялось 390K, так что это значение можно взять за отправную точку.

    Диод D5 является защитным. После стабилизатора LM317 следует цепь световой индикации состоящей из трех светодиодов (D2, D3, D4). Свечение светодиода D2 указывает на то, что аккумулятор полностью заряжен (напряжение 13 вольт).

    Светодиод D3 используется для указания напряжение на солнечной батареи (15,5 вольт). Последний светодиод D4 указывает на процесс заряда аккумулятора. Для срабатывания индикации выбрано пороговое значение 50 мА.

    Для работы светодиода D3 применен компаратор на операционном усилителе LM339, который сравнивает напряжение с выхода солнечной панели с опорным напряжением, полученным с помощью стабилитрона D1. Для экономии энергии аккумулятора светодиоды питаются непосредственно от солнечной панели через стабилизатор 78L12.

    Настройка контроллера заряда аккумулятора солнечной батареи

    После монтажа деталей и проверке на ошибки, на вход (вместо солнечной панели) необходимо подключить регулируемый блок питания и подать сначала напряжение 17…20 вольт. Изменяя сопротивление резистора R19 необходимо установить выходное напряжения стабилизатора в районе 13,6…13,8 вольт. После этого входное напряжение от блока питания необходимо выбрать около 13,1 вольт и подстроечным резистором R18 добиться, чтобы загорелся светодиод D2. При снижении напряжения блока питания ниже 13 вольт светодиод D2 должен погаснуть.

    Далее устанавливаем входное напряжение 15,5 вольт и, вращая подстроичник R4 добиваемся, чтобы загорелся светодиод D3. Для настройки индикации зарядки понадобится аккумулятор. Подключите его к контроллеру через амперметр, а напряжение на блоке питания выставите такое, чтобы аккумулятор заряжался током около 50мА. После этого выставьте резистор R14 так, чтобы загорелся D4. При снижении тока ниже 40мА светодиод D4 должен погаснуть. Собственное потребление контроллера (от аккумулятора) составляет около 9-10мА, что при использовании свинцово-кислотного аккумулятора незначительно.

    http://www.pctun.czechian.net/solarko/solarko.html



    Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png