Питающиеся неосязаемым способом бытовые приборы, освобождённые от электрических проводов, не первый раз будоражат умы изобретателей. Но именно теперь специалисты подошли к тому, чтобы научить серийные пылесосы, торшеры, телевизоры, автомобили, имплантаты, мобильные роботы и лэптопы эффективно и безопасно получать ток из беспроводного источника.

Недавно команда учёных из Массачусетского технологического института (MIT), возглавляемая Марином Солячичем (Marin Soljačic), совершила очередной шаг на пути превращения технологии беспроводного электричества из лабораторного «фокуса» в пригодную для тиражирования технологию. Совершенно неожиданно они обнаружили эффект, позволяющий поднять КПД передачи. Но прежде чем рассказать о новом эксперименте, стоит сделать отступление.

В качестве переносчика энергии в данном случае используется ближнее магнитное поле, осциллирующее с высокой частотой в несколько мегагерц. Для переброски необходимы две магнитные катушки, настроенные на одинаковую частоту резонанса. Перекачку энергии между ними учёные сравнивают с разрушением резонирующего стеклянного бокала, когда он «слышит» звук строго определённой частоты.

Идеализированные (на данном рисунке) магнитные катушки (жёлтый цвет), окружённые своими полями (красный и синий), передают друг другу энергию на расстоянии D, многократно большем, чем размер самих катушек. Это учёные и называют резонансной магнитной связью (или сцеплением) – Resonant Magnetic Coupling (иллюстрация WiTricity).

В результате взаимодействия катушек и получается то, что было названо «Беспроводным электричеством» (WiTricity). Кстати, слово это — торговая марка, которая принадлежит одноимённой корпорации , основанной Солячичем и рядом его коллег из MIT. Корпорация указывает, что данный термин применим только к её технологии и к продуктам, созданным на её основе. Большая просьба – не использовать «уайтрисити» как синоним беспроводной передачи энергии вообще.

Изобретатели также просят не путать WiTricity с передачей энергии посредством электромагнитных волн: мол, новый метод — «неизлучающий».

И ещё несколько важных «не», указанных создателями. WiTricity — не аналог трансформатора с разведёнными на несколько метров обмотками (последний в таком случае перестаёт работать). Это не улучшенная электрическая зубная щётка: она хоть и умеет заряжаться без электрического контакта, но всё равно требует помещения в «док-станцию» для сближения передающей и приёмной индуктивных катушек до расстояния в миллиметр. «Уайтрисити» – не микроволновка, способная поджарить живой объект, поскольку пульсирующее магнитное поле, работающее в системе WiTricity, на человека не влияет. Наконец, «Беспроводное электричество» – даже не «таинственная и ужасная» башня Теслы (Wardenclyffe Tower), при помощи которой великий изобретатель намеревался продемонстрировать передачу энергии на большое расстояние.

Первый опыт по беспроводной передаче энергии методом WiTricity на 60-ваттную лампочку, удалённую на два с лишним метра от источника, Марин и его коллеги провёли в 2007 году . КПД был невелик – порядка 40%, зато уже тогда изобретатели указывали на ощутимый плюс новинки — безопасность.

Применяемое в системе поле в 10 тысяч раз слабее, чем то, что царит в сердцевине магнитно-резонансного томографа. Так что ни живые организмы, ни медицинские имплантаты, ни кардиостимуляторы и прочая чувствительная техника такого рода, ни бытовая электроника почувствовать на себе действие этого поля не могут.


Главные авторы WiTricity: Марин Солячич (слева), Аристеидис Каралис (Aristeidis Karalis) и Джон Иоаннополус (John Joannopoulos). Справа: принципиальная схема WiTricity. Передающая катушка (левая) включена в розетку. Приёмная – соединена с потребителем. Линии магнитного поля первой катушки (голубой цвет) способны огибать относительно небольшие проводящие препятствия (а дерево, ткань, стекло, бетон или человека они и вовсе не замечают), успешно переправляя энергию (жёлтые линии) к приёмному кольцу (фото MIT/Donna Coveney, иллюстрация WiTricity).

Теперь же Солячич и его соратники открыли, что на КПД системы WiTricity влияют не только размер, геометрия и настройка катушек, а также дистанция между ними, но и число потребителей. Парадоксально, на первый взгляд, однако два приёмных прибора, размещённые на расстоянии от 1,6 до 2,7 метра по обе стороны от передающей «антенны», показали на 10% лучший КПД, чем в случае если связь осуществлялась только между одним источником и потребителем, как было в предыдущих опытах.

Причём улучшение прослеживалось независимо от того, каков был КПД для пар передатчик-приёмник по отдельности. Учёные предположили, что при дальнейшем добавлении новых потребителей КПД будет ещё повышаться, хотя пока не вполне ясно — насколько. (Детали эксперимента раскрывает в Applied Physics Letters.)

Передающая катушка в новом эксперименте насчитывала площадь в 1 квадратный метр, а приёмные — всего по 0,07 м 2 каждая. И это тоже интересно: громоздкость «приёмников» в прежних опытах ставила под сомнение желание производителей техники снабжать такими системами свою аппаратуру — едва ли вам понравился бы самозаряжающийся ноутбук, блок WiTricity которого по размеру сопоставим с самим компьютером.


Слева: 1 – специальная схема переводит обычный переменный ток в высокочастотный, он питает передающую катушку, создающую осциллирующее магнитное поле. 2 – приёмная катушка в устройстве-потребителе должна быть настроена на ту же частоту. 3 – резонансная связь между катушками превращает магнитное поле обратно в электрический ток, который питает лампочку.
Справа: по мнению авторов системы, одна катушка на потолке может снабжать энергией все приборы и устройства в комнате – от нескольких светильников и телевизора до ноутбука и DVD-проигрывателя (иллюстрация WiTricity).

Но главное – эффект улучшения общего КПД при одновременной работе с несколькими потребителями означает зелёную улицу для голубой мечты Солячича — дома, заполненного разнообразной техникой, получающей питание из невидимых «неизлучающих излучателей», спрятанных в потолках или стенах комнат.

А может быть, и не только в комнатах, но и в гараже? Конечно, зарядить электромобиль можно и обычным способом. Но прелесть WiTricity в том, что ничего никуда не нужно подключать и даже помнить об этом — теоретически машину можно научить самой по прибытию в гараж (или на автостоянку компании) посылать «запрос» системе и подпитывать аккумулятор от магнитной катушки, уложенной в полу.

Кстати, в некоторых экспериментах специалисты WiTricity довели мощность передачи до трёх киловатт (а начинали, напомним, с 60-ваттной лампочки). КПД же варьируется в зависимости от целого набора параметров, однако, как утверждает корпорация, при достаточно близких катушках он может превышать 95%.

Нетрудно догадаться, что перспективный метод передачи электроэнергии на несколько метров без проводов и необходимости в прицеливании каких-нибудь «силовых лучей» должен заинтересовать широкий спектр компаний. Некоторые уже работают в этом направлении самостоятельно.

Например, отталкиваясь от принципов, обоснованных и испытанных Солячичем и его коллегами, Intel ныне развивает свою модификацию резонансной передачи электроэнергии — Wireless Resonant Energy Link (WREL). Ещё в 2008 году компания достигла на данном поприще блестящего результата, продемонстрировав «магнитную» передачу тока с КПД 75% .


Одна из опытных установок Intel WREL, без проводов передающая электропитание (наряду с аудиосигналом) с MP3-плеера на небольшую колонку (фото с сайта gizmodo.com).

Собственные опыты, воспроизводящие эксперименты физиков из Массачусетского технологического, ставит сейчас и Sony .

Однако Солячич уверен, что его инновация не затеряется среди продукции коллег-конкурентов. Ведь именно первооткрыватели технологии больше всех набили с ней шишек и готовы к углублённому её изучению и совершенствованию. Скажем, настройка даже пары катушек не так проста, как кажется на поверхностный взгляд. Учёный несколько лет подряд ставил опыты в лаборатории, прежде чем построил систему, которая работает действительно надёжно.

Демонстрационный образец ЖК-экрана, получающего электрическое питание через первый прототип бытового набора WiTricity. Передающая катушка лежит на полу, приёмная – на столе (фото WiTricity).

«Беспроводное электричество», по словам его авторов, изначально задумывалось как OEM-продукт . Потому в будущем можно ожидать появления данной технологии в товарах других компаний.

И пробный шар в сторону потенциальных потребителей уже запущен. В январе в Лас-Вегасе на выставке CES 2010 китайская компания Haier показала первый в мире полностью беспроводной HDTV-телевизор. На его экран по воздуху передавался не только видеосигнал с проигрывателя (для чего применялся официально родившийся буквально месяцем раньше стандарт Wireless Home Digital Interface), но и электропитание. Последнее обеспечивала именно технология WiTricity.

А ещё компания Солячича ведёт переговоры с производителями мебели об установке катушек в столы и стены шкафов. Первое объявление о серийном продукте партнёра WiTricity ожидается к концу 2010 года.

Вообще же специалисты предсказывают появление на рынке настоящих бестселлеров — новых продуктов со встроенным приёмником WiTricity. Причём никто ещё не может уверенно сказать — что это будут за вещи.

Компания Haier является одним из крупнейших в мире производителей бытовой электроники. Неудивительно, что её инженеры заинтересовались возможностью соединить новейшие технологии беспроводной передачи HDTV-сигнала и беспроводного электропитания и даже ухитрились первыми показать такой прибор в действии (фотографии engadget.com, gizmodo.com).

Любопытно, что история WiTricity началась несколько лет назад с ряда досадных пробуждений Марина. Несколько раз в течение месяца его будил сигнал разряженного телефона, просящего «поесть». Забывавший вовремя подключить мобильник к розетке учёный удивлялся: разве не смешно, что телефон находится в нескольких метрах от электрической сети, но не в состоянии получить эту энергию. После очередного пробуждения в три часа ночи Солячич подумал: было бы здорово, если б телефон смог позаботиться о своей зарядке сам.

Заметим, речь сразу пошла не о новом варианте "ковриков" для зарядки карманных приборов. Такие системы работают, только если устройство положить непосредственно на «коврик», а это ведь для забывчивых людей ничуть не лучше, чем необходимость просто втыкать проводок в розетку. Нет, телефон должен был получать электроэнергию в любом месте комнаты, а то и квартиры, и не важно, бросили ли вы его на столе, диване или подоконнике.

Тут обычная электромагнитная индукция, направленные микроволновые лучи и "осторожные" инфракрасные лазеры — не годились. Марин взялся за поиск других вариантов. Едва ли он тогда мог подумать, что через некоторое время пищащий и «голодный» телефон приведёт его к созданию собственной компании и появлению технологии, способной «делать заголовки» и, что куда важнее, заинтересовать промышленных партнёров.

Добавим, что о принципах, истории и будущем WiTricity некогда довольно подробно рассказал исполнительный директор корпорации Эрик Гилер (Eric Giler).

Экология потребления.Технологии:Учёные в американской Исследовательской лаборатории Диснея (Disney Research) разработали метод беспроводной зарядки, сделавший ненужными провода и зарядные устройства.

Сегодняшние смартфоны, планшеты, ноутбуки и другие портативные устройства имеют огромную мощность и производительность. Но, помимо всех преимуществ мобильной электроники, у нее есть и обратная сторона – постоянная необходимость подзарядки через провода. Несмотря на все новые технологии батарей, эта необходимость уменьшает удобство устройств и ограничивает их перемещение.

Учёные в американской Исследовательской лаборатории Диснея (Disney Research) нашли решение этой проблемы. Они разработали метод беспроводной зарядки, сделавший ненужными провода и зарядные устройства. Причём их метод позволяет одновременно заряжать не только гаджеты, но и, к примеру, бытовую технику и освещение.

«Наш инновационный метод делает электрический ток таким же вездесущим, как и Wi-Fi, - говорит один из директоров лаборатории и её ведущий научный специалист Алансон Сэмпл. - Он открывает дорогу для дальнейших разработок в сфере робототехники, ранее ограниченных ёмкостью батарей. Пока мы продемонстрировали работу установки в небольшой комнате, но нет никаких препятствий к тому, чтобы увеличить её мощность до размеров склада».

Систему беспроводной передачи электроэнергии разработал ещё в 1890-х годах известный учёный Никола Тесла, однако массового распространения изобретение не получило. Сегодняшние системы передачи тока без проводов работают в основном на крайне ограниченных пространствах.

Метод, названный квазистатическим полостным резонансом (quasistatic cavity resonance, QSCR), заключается в подаче тока в стены, пол и потолок помещения. Они, в свою очередь, генерируют магнитные поля, которые воздействуют на подсоединённый к заряжаемому устройству приёмник, содержащий катушку. Выработанная таким образом электроэнергия передаётся батарее, предварительно пройдя через исключающие воздействие других полей конденсаторы.

Испытания показали, что таким образом через обычную электрическую сеть можно передавать до 1,9 киловатт мощности. Этой энергии хватает для того, чтобы одновременно заряжать до 320 смартфонов. Причем, по словам ученых, такая технология не дорогостоящая и может быть легко налажен ее коммерческий выпуск.

Испытания проходили в специально созданной из алюминиевых конструкций комнате размером 5 на 5 метров. Сэмпл подчеркнул, что в будущем наличие металлических стен может быть не обязательным. Можно будет использовать токопроводящие панели или специальную краску.

Разработчики уверяют, что их способ передачи энергии по воздуху не представляет никакой угрозы для здоровья человека и любых других живых существ. Их безопасность обеспечивается за счет дискретных конденсаторов, которые выполняют роль изолятора для потенциально опасных электрических полей. опубликовано

Со времен открытия электричества человеком многие ученые пытаются изучить удивительное явление токов и повысить полезный коэффициент действия, проводя многочисленные опыты и изобретая более современные материалы, обладающие улучшенными свойствами передачи энергии с нулевым сопротивлением. Наиболее перспективным направлением в подобном научном труде является беспроводная передача электроэнергии на большие расстояния и с минимальными затратами на транспортировку. В данной статье рассмотрены способы передачи энергии на расстояние, а также виды устройств для подобных действий.

Беспроводная передача энергии – это способ транспортировки, при котором не используются какие-либо проводники или сети кабелей, а ток передается на значительное расстояние до потребителя с максимальным коэффициентом полезной мощности по воздуху. Для этого применяются устройства для генерации электричества, а также передатчик, который накапливает в себе ток и рассеивает его во всех направлениях, а также приемник с потребляющим прибором. Приемник улавливает электромагнитные волны и поля и путем их концентрации на коротком участке проводника передает энергию на лампу или любой другой прибор определенной мощности.

Существует множество способов для беспроводной передачи электричества, которые изобретались в процессе изучения токов многими учеными, но наибольших результатов в практическом плане добился Никола Тесла. Он сумел изготовить передатчик и приемник, которые были отдалены друг от друга на расстояние, равное 48 километрам. Но в то время не существовало технологий, которые смогли бы передать электричество на такую дистанцию с коэффициентом выше 50%. В связи с этим ученый выражал большую перспективу не для передачи готовой сгенерированной энергии, а для вырабатывания тока из магнитного поля земли и использования его в бытовых нуждах. Транспортировка подобного электричества должна была осуществляться беспроводным способом, путем передачи по магнитным полям.

Способы беспроводной передачи электричества

Большинство теоретиков и практиков, изучающих работу электрического тока, предлагали свои методы передачи его на расстояние без использования проводников. В начале подобных исследований многие ученые пытались заимствовать практику из принципа работы радиоприемников, которые используются для передачи азбуки Морзе или коротковолнового радио. Но такие технологии не оправдали себя, так как рассеивание тока было слишком малым и не могло покрыть большие расстояния, к тому же транспортировка электричества по радиоволнам была возможна только при работе с малыми мощностями, не способными приводить в действие даже самый простейший механизм.

В результате экспериментов было выявлено, что для передачи электричества без провода наиболее приемлемы СВЧ волны, которые имеют более устойчивую конфигурацию и напряжение, а также при рассеивании теряют гораздо меньше энергии, чем любой другой метод.

Впервые успешно применить данный способ смог изобретатель и конструктор Вильям Браун, который смоделировал летающую платформу, состоящую из металлической площадки с двигателем, мощностью около 0,1 лошадиной силы. Платформа была выполнена в виде принимающей антенны с сеткой, улавливающей СВЧ волны, которые передавались специально сконструированным генератором. Через всего четырнадцать лет тот же конструктор представил летательный аппарат малой мощности, который принимал энергию от передатчика на расстоянии 1,6 километра, ток передавался сконцентрированным пучком по СВЧ волнам. К сожалению, широкого распространения данный труд не получил, так как на тот момент не существовало технологий, которые могли бы обеспечить транспортировку таким методом тока с высоким напряжением, хотя коэффициент полезного действия приемника и генератора был равен более 80%.

В 1968 году американские ученые разработали проект, подкрепленный научным трудом, в котором предлагалось размещение больших солнечных батарей на околоземной орбите. Приемники энергии должны были быть направлены на солнце, а в их основании размещались накопители тока. После поглощения солнечной радиации и трансформации ее в СВЧ или магнитные волны через специальное устройство ток направлялся на землю. Прием должен был осуществляться специальной антенной большой площади, настроенной на определенную волну и преобразующей волны в постоянный или переменный ток. Такая система была высоко оценена во многих странах как перспективная альтернатива современным источникам электричества.

Питание электрокара беспроводным способом

Многие производители автомобилей, работающих на электрическом токе, проводят разработки альтернативной подзарядки авто без его подключения к сети. Больших успехов в этой области добилась технология зарядки транспорта от специального дорожного полотна, когда машина принимала энергию от покрытия, заряженного магнитным полем или СВЧ волнами. Но подобная подпитка была возможна только при условии, когда расстояние между дорогой и приемным устройством было не более 15 сантиметров, что в современных условиях не всегда исполнимо.

Данная система находится на стадии разработок, поэтому можно предполагать, что подобный тип передачи питания без проводника еще получит свое развитие и, возможно, будет внедряться в современную транспортную индустрию.

Современные разработки передачи энергии

В современных реалиях беспроводное электричество вновь становится актуальным направлением изучения и конструирования приборов. Существуют наиболее перспективные пути развития беспроводной передачи энергии, к которым относятся:

  1. Использование электричества в горной местности, в случаях, когда нет возможности проложить несущие кабеля до потребителя. Несмотря на изученность вопроса электричества, на земле имеются места, в которых нет электроэнергии, и проживающие там люди не могут пользоваться таким благом цивилизации. Конечно, часто там применяются автономные источники питания, такие как солнечные батареи или генераторы, но данный ресурс ограничен и не может восполнить потребности в полном объеме;
  2. Некоторые производители современной бытовой техники уже внедряют в свою продукцию устройства для передачи энергии без проводов. Например, на рынке предлагается специальный блок, который подключается к сетевому питанию и путем преобразования постоянного тока в СВЧ волны передает их окружающим приборам. Единственное условие использования данного прибора – это наличие у бытовой техники принимающего устройства, преобразующего данные волны в постоянный ток. В продаже имеются телевизоры, которые полностью работают от принимаемой от передатчика беспроводной энергии;
  3. В военных целях, в большинстве случаев в оборонной сфере, существуют разработки приборов связи и других вспомогательных устройств.

Большой прорыв в данной сфере технологий произошел в 2014 году, когда группа ученых разработала устройство для генерации и приема энергии на расстояние без проводов, используя при этом систему линз, размещенных между передающей и приемной катушками. Ранее считалось, что передача тока без проводника возможна на дистанцию, не превышающую размер приборов, поэтому для транспортировки электричества на большое расстояние требовалось огромное сооружение. Но современные конструкторы изменили принцип работы данного устройства и создали передатчик, направляющий не СВЧ волны, а магнитные поля с низкими частотами. Электроны в данном случае не теряют мощность и передаются на расстояние сконцентрированным пучком, к тому же потребление энергии возможно, не только подключившись к приемной детали, но и просто находясь в зоне действия полей.

К сведению. Первым прибором, который будет принимать беспроводную энергию, технологи планируют сделать мобильный телефон или планшетный компьютер, разработки такой системы уже ведутся.

Наиболее перспективные направления

Беспроводное электричество постоянно изучается многими физиками, рассматриваются наиболее перспективные направления в данной сфере, к которым относятся:

  1. Подзарядка мобильных устройств без подключения к кабелю;
  2. Осуществление питания для беспилотных летательных аппаратов – это направление, которое будет пользоваться большим спросом и в гражданской, и в военной индустрии, так как подобные устройства в последнее время стали часто использоваться для различных целей.

Сама процедура передачи данных на расстояние без использования проводов некоторое время назад считалась прорывом в исследованиях физики и энергетики, сейчас это уже никого не удивляет и стало доступным для любого человека. Благодаря современному развитию технологий и разработкам, транспортировка электроэнергии таким методом становится реальностью и вполне может быть воплощена в жизнь.

Видео

Вопросом передачи электричества без проводов ученые занимаются уже третий век. В последнее время вопрос не то чтобы не потерял актуальности, а наоборот сделал шаг вперед, что только радует. Читателям сайта мы решили подробно рассказать как развивалась беспроводная передача электроэнергии на расстояния от начала и до наших дней, а также какие технологии уже практикуются.

История развития

Передача электроэнергии на расстояние без проводов рука об руку развивается с прогрессом в области радиопередачи, потому что принцип действия в этих явлениях во многом схож, если не сказать одинаков. Большая часть изобретений основывается на методе электромагнитной индукции, а также электростатического поля.

В 1820 году А.М. Ампер открыл закон взаимодействия токов, который заключался, в том, что если по двум близко расположенным проводникам ток течет в одном направлении, то они притягиваются друг к другу, а если в разных, то отталкиваются.

М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное (меняющееся по величине и направлении во времени) магнитное поле, порождаемое протеканием электрического тока, наводит (индуцирует) токи в близлежащих проводниках. Т.е. происходит передача электроэнергии без проводов. Подробно мы рассматривали в статье ранее.

Ну а Дж. К. Максвелл еще через 33 года, в 1864 году перевел экспериментальные данные Фарадея в математический вид, собственно уравнения Максвелла являются основополагающими в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.

Существование электромагнитных волн подтвердил в 1888 Г. Герц, в ходе своих экспериментов с искровым передатчиком с прерывателем на катушке Румкорфа. Таким образом производились ЭМ волны с частотой до пол гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но те должны быть настроены в резонанс с передатчиком. Радиус действия установки был в районе 3-х метров. Когда в передатчике возникала искра, такие же возникали и на приемниках. Фактически это и есть первые опыты по передачи электроэнергии без проводов.

Глубокие исследования вел известный ученый Никола Тесла. Он в 1891 году изучал переменный ток высокого напряжения и частоты. В результате чего были сделаны выводы:

Для каждой конкретной цели нужно настраивать установку на соответствующую частоту и напряжение. При этом высокая частота не является обязательным условием. Лучшие результаты удалось добиться при частоте 15-20 кГц и напряжении передатчика 20кВ. Чтобы получить ток высокой частоты и напряжения использовался колебательный разряд конденсатора. Таким образом, можно передавать как электроэнергию, так и производить свет.

Ученный на своих выступлениях и лекциях демонстрировал свечение ламп (вакуумных трубок) под воздействием высокочастотного электростатического поля. Собственно основными заключениями Теслы было то, что даже в случае использования резонансных систем много энергии с помощью электромагнитной волны передать не получится.

Параллельно целый ряд ученных до 1897 года занимались подобными исследованиями: Джагдиш Боше в Индии, Александр Попов в России и Гульельмо Маркони в Италии.

Каждый из них внес свой вклад в развитие беспроводной передачи электроэнергии:

  1. Дж. Боше в 1894 году, зажигал порох, передав электроэнергию на расстояние без проводов. Это он сделал на демонстрации в Калькутте.
  2. А. Попов в 25 апреля (7 мая) 1895 года с помощью азбуки Морзе передал первое сообщение. В России до сих пор этот день, 7 мая, является Днём Радио.
  3. В 1896 году Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние в 1,5 км, позже на 3 км на Солсберийской равнине.

Стоит отметить, что работы Тесла, недооценённые в свое время и потерянные на века, превосходили по параметрам и возможностям работы его современников. В тоже время, а именно в 1896 году его аппараты передавали сигнал на большие расстояния (48 км), к сожалению это было небольшим количеством электроэнергии.

И к 1899 году Тесла приходит к выводу:

Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха.

Эти выводу приведут к другим исследованиям, в 1900 году ему удалось запитать лампу от катушки, вынесенной в поле, а в 1903 году была запущена башня Вондерклифф на Лонг-Айленде. Она состояла из трансформатора с заземленной вторичной обмоткой, а на её вершине стоял медный сферический купол. С её помощью получилось зажечь 200 50-ватных ламп. При этом передатчик находился за 40 км от неё. К сожалению, эти исследования были прерваны, финансирование было прекращено, а бесплатная передача электроэнергии без проводов была экономически не выгодной бизнесменам. Башню разрушили в 1917 году.

В наши дни

Технологии беспроводной передачи электроэнергии сильно шагнули вперед, в основном в области передачи данных. Так значительных успехов достигла радиосвязь, беспроводные технологии типа Bluetooth и Wi-fi. Особых нововведений не произошло, в основном изменялись частоты, способы шифровки сигнала, представление сигнала перешло из аналогового в цифровой вид.

Если вести речь о передаче электроэнергии без проводов для питания электрооборудования, стоит упомянуть о том, что в 2007 году исследователи из Массачусетского института передали энергию на 2 метра и зажгли 60-ваттную лампочку таким образом. Эта технология получила названия WiTricity, в её основе электромагнитный резонанс приемника и передатчика. Стоит отметить, что приемник получает порядка 40-45% электроэнергии. Обобщенная схема устройства для передачи энергии через магнитное поле изображена на рисунке ниже:

На видео пример применения этой технологии для зарядки электромобиля. Суть заключается в том, что на дно электромобиля крепят приемник, а в гараже или на другом месте устанавливают передатчик на полу.

Вы должны поставить машину так, чтобы приемник располагался над передатчиком. Устройство передает достаточно много электроэнергии без проводов – от 3,6 до 11 кВт в час.

Компания в перспективе рассматривает обеспечение электричеством такой технологией и бытовой техники, а также всей квартиры в целом. В 2010 году компания Haier представила беспроводной телевизор, который получает питание с помощью аналогичной технологии, а также видеосигнал без проводов. Подобные разработки ведут и другие передовые компании, такие как Intel, Sony.

В быту широко распространены технологии беспроводной передачи электроэнергии, например, для зарядки смартфона. Принцип аналогичный – есть передатчик, есть приемник, КПД порядка 50%, т.е. для заряда током в 1А передатчик будет потреблять 2А. Передатчик обычно в таких комплектах называется базой, а та часть, что подключается к телефону – приемником или антенной.

Другой нишей является беспроводная передача электричества с помощью микроволн или лазера. Это обеспечивает больший радиус действия, нежели пара метров, которые обеспечивает магнитная индукция. В микроволновом способе на принимающее устройство устанавливают ректенну (нелинейная антенна для преобразования электромагнитной волны в постоянный ток), а передатчик направляет своё излучение в эту сторону. В таком варианте беспроводной передачи электричества отсутствует необходимость прямой видимости объектов. Минусом является то, что микроволновое излучение небезопасно для окружающей среды.

В заключение хотелось бы отметить — беспроводная передача электричества, безусловно, удобна для использования в повседневной жизни, но у неё есть свои плюсы и минусы. Если говорить об использовании таких технологий для заряда гаджетов, то плюсом является то, что вам не придется постоянно вставлять и вынимать из разъёма вашего смартфона штекер, соответственно разъём не выйдет из строя. Минусом является низкий КПД, если для смартфона потери энергии не существенны (несколько Ватт), то для беспроводной зарядки электромобиля – это весьма большая проблема. Основной целью развития в этой технологии является повысить КПД установки, ведь на фоне повсеместной гонки за энергосбережением использование технологий с низким КПД весьма сомнительно.

Похожие материалы:

Нравится(0 ) Не нравится(0 )

Беспроводная передача электричества

Беспроводна́я переда́ча электри́чества - способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи . К году имели место успешные опыты с передачей энергии мощностью порядка десятков киловатт в микроволновом диапазоне с КПД около 40 % - в 1975 в Goldstone, Калифорния и в 1997 в Grand Bassin на острове Реюньон (дальность порядка километра, исследования в области энергоснабжения посёлка без прокладки кабельной электросети). Технологические принципы такой передачи включают в себя индукционный (на малых расстояниях и относительно малых мощностях), резонансный (используется в бесконтактных смарт-картах и чипах RFID) и направленный электромагнитный для относительно больших расстояний и мощностей (в диапазоне от ультрафиолета до микроволн).

История беспроводной передачи энергии

  • 1820 : Андре Мари Ампер открыл закон (после названный в честь открывателя, законом Ампера), показывающий, что электрический ток производит магнитное поле.
  • 1831 : Майкл Фарадей открыл закон индукции , важный базовый закон электромагнетизма .
  • 1862 : Карло Маттеучи впервые провел опыты по передаче и приёму электрической индукции с помощью плоско спиральных катушек .
  • 1864 : Джеймс Максвелл систематизировал все предыдущие наблюдения, эксперименты и уравнения по электричеству, магнетизму и оптике в последовательную теорию и строгое математическое описание поведения электромагнитного поля .
  • 1888 : Генрих Герц подтвердил существование электромагнитного поля. «Аппарат для генерации электромагнитного поля » Герца был СВЧ или УВЧ искровой передатчик «радиоволн».
  • 1891 : Никола Тесла улучшил передатчик волн Герца радиочастотного энергоснабжения в своём патенте No. 454,622, «Система электрического освещения».
  • 1893 : Тесла демонстрирует беспроводное освещение люминесцентными лампами в проекте для Колумбовской всемирной выставки в Чикаго .
  • 1894 : Тесла зажигает без проводов лампу накаливания в лаборатории на Пятой авеню , а позже в лаборатории на Хьюстон стрит в Нью-Йорке, с помощью «электродинамической индукции », то есть посредством беспроводной резонансной взаимоиндукции .
  • 1894 : Джагдиш Чандра Боше дистанционно воспламеняет порох и ударяет в колокол с использованием электромагнитных волн, показывая, что сигналы связи можно посылать без проводов.
  • 1895 : А. С. Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества 25 апреля (7 мая) года
  • 1895 : Боше передаёт сигнал на расстояние около одной мили.
  • 1896 : Гульельмо Маркони подает заявку на изобретение радио 2 июня 1896 года .
  • 1896 : Тесла передаёт сигнал на расстояние около 48 километров.
  • 1897 : Гульельмо Маркони передает текстовое сообщение азбукой Морзе на расстояние около 6 км, используя для этого радиопередатчик.
  • 1897 : Тесла регистрирует первый из своих патентов по применению беспроводной передачи.
  • 1899 : В Колорадо Спрингс Тесла пишет: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха ».
  • 1900 : Гульельмо Маркони не смог получить патент на изобретение радио в Соединённых Штатах.
  • 1901 : Маркони передаёт сигнал через Атлантический океан, используя аппарат Тесла.
  • 1902 : Тесла против Реджинальда Фессендена: конфликт американского патента No. 21,701 «Система передачи сигналов (беспроводная). Избирательное включение ламп накаливания, электронные логические элементы в целом».
  • 1904 : На Всемирной выставке в Сент-Луисе предлагается премия за успешную попытку управления двигателем дирижабля мощностью 0,1 л.с. (75 Вт) от энергии, передаваемой дистанционно на расстояние менее 100 футов (30 м).
  • 1917 : Разрушена Башня Ворденклиф , построенная Никола Тесла для проведения опытов по беспроводной передаче больших мощностей.
  • 1926 : Шинтаро Уда и Хидецугу Яги публикуют первую статью «о регулируемом направленном канале связи с высоким усилением », хорошо известном как «антенна Яги-Уда» или антенна «волновой канал».
  • 1961 : Уильям Браун публикует статью по исследованию возможности передачи энергии посредством микроволн.
  • 1964 : Уильям Браун и Уолтер Кроникт демонстрируют на канале CBS News модель вертолета, получающего всю необходимую ему энергию от микроволнового луча.
  • 1968 : Питер Глейзер предлагает беспроводную передачу солнечной энергии из космоса с помощью технологии «Энергетический луч». Это считается первым описанием орбитальной энергетической системы .
  • 1973 : Первая в мире пассивная система RFID продемонстрирована в Лос-Аламосской Национальной лаборатории.
  • 1975 : Комплекс дальней космической связи Голдстоун проводит эксперименты по передаче мощности в десятки киловатт.
  • 2007 : Исследовательская группа под руководством профессора Марина Солячича из Массачусетского технологического института передала беспроводным способом на расстояние 2 м мощность, достаточную для свечения лампочки 60 вт, с к.п.д. 40 %, с помощью двух катушек диаметром 60 см.
  • 2008 : Фирма Bombardier предлагает новый продукт для беспроводной передачи PRIMOVE, мощная система для применения в трамваях и двигателях малотоннажной железной дороги.
  • 2008 : Корпорация Intel воспроизводит опыты Никола Тесла 1894 года и группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с к.п.д. 75 %.
  • 2009 : Консорциум заинтересованных компаний, названный Wireless Power Consortium, объявил о скором завершении разработки нового промышленного стандарта для маломощных индукционных зарядных устройств.
  • 2009 : Представлен промышленный фонарь, способный безопасно работать и перезаряжаться бесконтактным способом в атмосфере, насыщенной огнеопасным газом. Это изделие было разработано норвежской компанией Wireless Power & Communication .
  • 2009 : Haier Group представила первый в мире полностью беспроводной LCD телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI).

Технология (ультразвуковой метод)

Изобретение студентов университета Пенсильвании. Впервые широкой публике установка была представлена на выставке The All Things Digital (D9) в 2011 году. Как и в других способах беспроводной передачи чего-либо, используется приёмник и передатчик. Передатчик излучает ультразвук, приёмник, в свою очередь, преобразует слышимое в электричество. На момент презентации расстояние передачи достигает 7-10 метров, необходима прямая видимость приёмника и передатчика. Из известных характеристик - передаваемое напряжение достигает 8 вольт, однако не сообщается получаемая сила тока. Используемые ультразвуковые частоты никак не действуют на человека. Также нет сведений и об отрицательном воздействии на животных.

Метод электромагнитной индукции

Техника беспроводной передачи методом электромагнитной индукции использует ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери все-же происходят. Кроме того, как правило, имеют место и резистивные потери. Благодаря электродинамической индукции, переменный электрический ток, протекающий через первичную обмотку, создает переменное магнитное поле, которое действует на вторичную обмотку, индуцируя в ней электрический ток. Для достижения высокой эффективности взаимодействие должно быть достаточно тесным. По мере удаления вторичной обмотки от первичной, все большая часть магнитного поля не достигает вторичной обмотки. Даже на относительно небольших расстояниях индуктивная связь становится крайне неэффективной, расходуя большую часть передаваемой энергии впустую.

Электрический трансформатор является простейшим устройством для беспроводной передачи энергии. Первичная и вторичная обмотки трансформатора прямо не связаны. Передача энергии осуществляется посредством процесса, известного как взаимная индукция. Основной функцией трансформатора является увеличение или уменьшение первичного напряжения. Бесконтактные зарядные устройства мобильных телефонов и электрических зубных щеток являются примерами использования принципа электродинамической индукции. Индукционные плиты также используют этот метод. Основным недостатком метода беспроводной передачи является крайне небольшое расстояние его действия. Приемник должен находиться в непосредственной близости к передатчику для того, чтобы эффективно с ним взаимодействовать.

Использование резонанса несколько увеличивает дальность передачи. При резонансной индукции передатчик и приемник настроены на одну частоту. Производительность может быть улучшена еще больше путем изменения формы волны управляющего тока от синусоидальных до несинусоидальных переходных формы волны. Импульсная передача энергии происходит в течение нескольких циклов. Таким образом, значительная мощность может быть передана между двумя взаимно настроенными LC-цепями с относительно невысоким коэффициентом связи. Передающая и приемная катушки, как правило, представляют собой однослойные соленоиды или плоскую спираль с набором конденсаторов, которые позволяют настроить принимающий элемент на частоту передатчика.

Обычным применением резонансной электродинамической индукции является зарядка аккумуляторных батарей портативных устройств, таких как портативные компьютеры и сотовые телефоны, медицинские имплантаты и электромобили. Техника локализованной зарядки использует выбор соответствующей передающей катушки в структуре массива многослойных обмоток. Резонанс используется как в панели беспроводной зарядки (передающем контуре), так и в модуле приемника (встроенного в нагрузку) для обеспечения максимальной эффективности передачи энергии. Такая техника передачи подходит универсальным беспроводным зарядным панелям для подзарядки портативной электроники, такой, например, как мобильные телефоны. Техника принята в качестве части стандарта беспроводной зарядки Qi.

Резонансная электродинамическая индукция также используется для питания устройств, не имеющих аккумуляторных батарей, таких как RFID-метки и бесконтактные смарт-карты, а также для передачи электрической энергии от первичного индуктора винтовому резонатору трансформатора Теслы, также являющимся беспроводным передатчиком электрической энергии.

Электростатическая индукция

Переменный ток может передаваться через слои атмосферы, имеющие атмосферное давление менее 135 мм рт. ст. Ток протекает посредством электростатической индукции через нижние слои атмосферы примерно в 2-3 милях над уровнем моря и благодаря потоку ионов, то есть, электрической проводимости через ионизированную область, расположенную на высоте выше 5 км. Интенсивные вертикальные пучки ультрафиолетового излучения могут быть использованы для ионизации атмосферных газов непосредственно над двумя возвышенными терминалами, приводя к образованию плазменных высоковольтных линий электропередач, ведущих прямо к проводящим слоям атмосферы. В результате между двумя возвышенными терминалами образуется поток электрического тока, проходящий до тропосферы, через нее и обратно на другой терминал. Электропроводность через слои атмосферы становится возможной благодаря емкостному плазменному разряду в ионизированной атмосфере.

Никола Тесла обнаружил, что электроэнергия может передаваться и через землю, и через атмосферу. В ходе своих исследований он добился возгорания лампы на умеренных расстояниях и зафиксировал передачу электроэнергии на больших дистанциях. Башня Ворденклиф задумывался как коммерческий проект по трансатлантической беспроводной телефонии и стал реальной демонстрацией возможности беспроводной передачи электроэнергии в глобальном масштабе. Установка не была завершена из-за недостаточного финансирования.

Земля является естественным проводником и образует один проводящий контур. Обратный контур реализуется через верхние слои тропосферы и нижние слои стратосферы на высоте около 4.5 миль (7.2 км).

Глобальная система передачи электроэнергии без проводов, так называемая "Всемирная беспроводная система", основанная на высокой электропроводности плазмы и высокой электропроводности земли, была предложена Николой Тесла в начале 1904 года и вполне могла стать причиной Тунгусского метеорита , возникшего в результате "короткого замыкания" между заряженной атмосферой и землей.

Всемирная беспроводная система

Ранние эксперименты известного сербского изобретателя Никола Теслы касались распространения обычных радиоволн, то есть волн Герца, электромагнитных волн, распространяющихся в пространстве.

В 1919 году Никола Тесла писал: «Считается, что я начал работу над беспроводной передачей в 1893 году, но на самом деле два предыдущих года я проводил исследования и конструировал аппаратуру. Для меня было ясно с самого начала, что успех можно достичь благодаря ряду радикальных решений. Высокочастотные генераторы и электрические осцилляторы должны были быть созданы в первую очередь. Их энергию необходимо было преобразовать в эффективных передатчиках и принять на расстоянии надлежащими приемниками. Такая система была бы эффективна в случае исключения любого постороннего вмешательства и обеспечения ее полной эксклюзивности. Со временем, однако, я осознал, что для эффективной работы устройств такого рода они должны разрабатываться с учетом физических свойств нашей планеты».

Одним из условий создания всемирной беспроводной системы является строительство резонансных приемников. Заземленный винтовой резонатор катушки Теслы и расположенный на возвышении терминал могут быть использованы в качестве таковых. Тесла лично неоднократно демонстрировал беспроводную передачу электрической энергии от передающей к приемной катушке Теслы. Это стало частью его беспроводной системы передачи (патент США № 1119732, Аппарат для передачи электрической энергии, 18 января 1902 г.). Тесла предложил установить более тридцати приемо-передающих станций по всему миру. В этой системе приемная катушка действует как понижающий трансформатор с высоким выходным током. Параметры передающей катушки тождественны приемной.

Целью мировой беспроводной системы Теслы являлось совмещение передачи энергии с радиовещанием и направленной беспроводной связью, которое бы позволило избавиться от многочисленных высоковольтных линий электропередачи и содействие объединению электрических генерирующих в глобальном масштабе.

См. также

  • Энергетический луч

Примечания

  1. «Electricity at the Columbian Exposition», by John Patrick Barrett. 1894, pp. 168-169 (англ.)
  2. Experiments with Alternating Currents of Very High Frequency and Their Application to Methods of Artificial Illumination, AIEE, Columbia College, N.Y., May 20, 1891 (англ.)
  3. Experiments with Alternate Currents of High Potential and High Frequency, IEE Address, London, February 1892 (англ.)
  4. On Light and Other High Frequency Phenomena, Franklin Institute, Philadelphia, February 1893 and National Electric Light Association, St. Louis, March 1893 (англ.)
  5. The Work of Jagdish Chandra Bose: 100 years of mm-wave research (англ.)
  6. Jagadish Chandra Bose (англ.)
  7. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power, pp. 26-29. (англ.)
  8. June 5, 1899, Nikola Tesla Colorado Spring Notes 1899-1900, Nolit, 1978 (англ.)
  9. Nikola Tesla: Guided Weapons & Computer Technology (англ.)
  10. The Electrician (London), 1904 (англ.)
  11. Scanning the Past: A History of Electrical Engineering from the Past, Hidetsugu Yagi
  12. A survey of the elements of power Transmission by microwave beam, in 1961 IRE Int. Conf. Rec., vol.9, part 3, pp.93-105 (англ.)
  13. IEEE Microwave Theory and Techniques, Bill Brown’s Distinguished Career (англ.)
  14. Power from the Sun: Its Future, Science Vol. 162, pp. 957-961 (1968)
  15. Solar Power Satellite patent (англ.)
  16. History of RFID (англ.)
  17. Space Solar Energy Initiative (англ.)
  18. Wireless Power Transmission for Solar Power Satellite (SPS) (Second Draft by N. Shinohara), Space Solar Power Workshop, Georgia Institute of Technology (англ.)
  19. W. C. Brown: The History of Power Transmission by Radio Waves: Microwave Theory and Techniques, IEEE Transactions on September, 1984, v. 32 (9), pp. 1230-1242 (англ.)
  20. Wireless Power Transfer via Strongly Coupled Magnetic Resonances (англ.) . Science (7 June 2007). Архивировано ,
    Заработал новый способ беспроводной передачи электричества (рус.) . MEMBRANA.RU (8 июня 2007). Архивировано из первоисточника 29 февраля 2012. Проверено 6 сентября 2010.
  21. Bombardier PRIMOVE Technology
  22. Intel imagines wireless power for your laptop (англ.)
  23. wireless electricity specification nearing completion
  24. TX40 and CX40, Ex approved Torch and Charger (англ.)
  25. Haier’s wireless HDTV lacks wires, svelte profile (video) (англ.) ,
    Беспроводное электричество поразило своих создателей (рус.) . MEMBRANA.RU (16 февраля 2010). Архивировано из первоисточника 26 февраля 2012. Проверено 6 сентября 2010.
  26. Eric Giler demos wireless electricity | Video on TED.com
  27. "Nikola Tesla and the Diameter of the Earth: A Discussion of One of the Many Modes of Operation of the Wardenclyffe Tower," K. L. Corum and J. F. Corum, Ph.D. 1996
  28. William Beaty, Yahoo Wireless Energy Transmission Tech Group Message #787 , reprinted in WIRELESS TRANSMISSION THEORY .
  29. Wait, James R., The Ancient and Modern History of EM Ground-Wave Propagation," IEEE Antennas and Propagation Magazine , Vol. 40, No. 5, October 1998.
  30. SYSTEM OF TRANSMISSION OF ELECTRICAL ENERGY , Sept. 2, 1897, U.S. Patent No. 645,576, Mar. 20, 1900.
  31. I have to say here that when I filed the applications of September 2, 1897, for the transmission of energy in which this method was disclosed, it was already clear to me that I did not need to have terminals at such high elevation, but I never have, above my signature, announced anything that I did not prove first. That is the reason why no statement of mine was ever contradicted, and I do not think it will be, because whenever I publish something I go through it first by experiment, then from experiment I calculate, and when I have the theory and practice meet I announce the results.
    At that time I was absolutely sure that I could put up a commercial plant, if I could do nothing else but what I had done in my laboratory on Houston Street; but I had already calculated and found that I did not need great heights to apply this method. My patent says that I break down the atmosphere "at or near" the terminal. If my conducting atmosphere is 2 or 3 miles above the plant, I consider this very near the terminal as compared to the distance of my receiving terminal, which may be across the Pacific. That is simply an expression. . . .
  32. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power


Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png