Трансформаторные БП

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора , у которого первичная обмотка рассчитана на сетевое напряжение . Затем устанавливается выпрямитель , преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр , сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков, защиты от КЗ , стабилизаторы напряжения и тока.

Габариты трансформатора

Существует формула, несложно выводимая из базовых законов электротехники (и даже уравнений Максвелла):

(1 / n) ~ f * S * B

где n - число витков на 1 вольт (в левой части формулы стоит ЭДС одного витка, которая есть по уравнению Максвелла производная от магнитного потока, поток есть нечто в виде sin (f * t), в производной f выносится за скобку), f - частота переменного напряжения, S - площадь сечения магнитопровода, B - индукция магнитного поля в нем. Формула описывает амплитуду B, а не мгновенное значение.

Величина B на практике ограничена сверху возникновением гистерезиса в сердечнике, что приводит к потерям на перемагничивание и перегреву трансформатора.

Если принять, что f есть частота сети (50 Гц), то единственные два параметра, доступные для выбора при разработке трансформатора, есть S и n. На практике принята эвристика n = (от 55 до 70) / S в см^2.

Увеличение S означает повышение габаритов и веса трансформатора. Если же идти по пути снижения S, то это означает повышение n, что в трансформаторе небольшого размера означает снижение сечения провода (иначе обмотка не поместится на сердечнике).

Увеличение n и снижение сечения означает сильное увеличение активного сопротивления обмотки. В маломощных трансформаторах, где ток через обмотку невелик, этим можно пренебречь, но с повышением мощности ток через обмотку растет и, при высоком сопротивлении обмотки, рассеивает на ней значительную тепловую мощность, что недопустимо.

Перечисленные выше соображения приводят к тому, что на частоте 50 Гц трансформатор большой (от десятков ватт) мощности может быть успешно реализован только как устройство большого габарита и веса (по пути повышения S и сечения провода со снижением n).

Потому в современных БП идут по другому пути, а именно по пути повышения f, т.е. переходу на импульсные блоки питания. Таковые блоки питания в разы легче (причем основная часть веса приходится на экранирующую клетку) и значительно меньше габаритами, чем классические. Кроме того, они не требовательны к входному напряжению и частоте.

Достоинства трансформаторных БП

  • Простота конструкции
  • Доступность элементной базы
  • Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счет гармонических составляющих)

Недостатки трансформаторных БП

  • Большой вес и габариты, особенно при большой мощности
  • Металлоёмкость
  • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.

Импульсные БП

Импульсные блоки питания являются инверторной системой . В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности , либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы - это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи . Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона . В зависимости от величины сигнала обратной связи (зависящему от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения . Таким образом, блок питания поддерживает стабильное выходное напряжение.

Достоинства импульсных БП

Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами:

  • меньшим весом за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных тяжелых низкочастотных силовых трансформаторов и мощных радиаторов силовых элементов, работающих в линейном режиме;
  • значительно более высоким КПД (вплоть до 90-98%) за счет того, что основные потери в импульсных стабилизаторах связаны с переходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном из устойчивых состояний (т.е. либо включен, либо выключен) потери энергии минимальны;
  • меньшей стоимостью, благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности. Кроме этого следует отметить значительно более низкую стоимость импульсных трансформаторов при сравнимой передаваемой мощности, и возможность использования менее мощных силовых элементов, поскольку режим их работы ключевой;
  • сравнимой с линейными стабилизаторами надежностью. (Блоки питания вычислительной техники, оргтехники, бытовой техники почти исключительно импульсные).
  • широким диапазоном питающего напряжения и частоты, недостижимым для сравнимого по цене линейного. На практике это означает возможность использования одного и того же импульсного БП для носимой цифровой электроники в разных странах мира - Россия/США/Англия, сильно отличных по напряжению и частоте в стандартных розетках.
  • наличием в большинстве современных БП встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания и от отсутствия нагрузки на выходе.

Недостатки импульсных БП

  • Работа основной части схемы без гальванической развязки от сети, что, в частности, несколько затрудняет ремонт таких БП;
  • Все без исключения импульсные блоки питания являются источником высокочастотных помех, поскольку это связано с самим принципом их работы. Поэтому требуется предпринимать дополнительные меры помехоподавления, зачастую не позволяющие устранить помехи полностью. В связи с этим часто недопустимо применение импульсных БП для некоторых видов аппаратуры.
  • В распределённых системах электропитания: эффект гармоник кратных трём. При наличии эффективно действующих корректоров фактора мощности и фильтров во входных цепях этот недостаток обычно не актуален.

В настоящее время практически не используются.

  • Напряжение −5 В использовался только интерфейсом ISA и из-за фактического отсутствия этого интерфейса на современных материнских платах провод −5 В в новых блоках питания отсутствует.
  • Напряжение −12 В необходим лишь для полной реализации стандарта последовательного интерфейса RS-232 , поэтому также часто отсутствует.
  • Напряжения ±5, ±12, +3,3, +5 В дежурного режима используются материнской платой. Для жёстких дисков , оптических приводов , вентиляторов используются только напряжения +5 и +12 В.
  • Современные электронные компоненты используют напряжение питания не выше +5 Вольт. Наиболее мощные потребители энергии, такие как видеокарта , центральный процессор , северный мост подключаются через размещенные на материнской плате или на видеокарте вторичные преобразователи с питанием от цепей как +5 В так и +12 В.
  • Напряжение +12 В используется для питания наиболее мощных потребителей. Разделение питающих напряжений на 12 и 5 В целесообразно как для снижения токов по печатным проводникам плат, так и для снижения потерь энергии на выходных выпрямительных диодах блока питания.
  • Напряжение +3,3 В в блоке питания формируется из напряжения +5 В, а потому существует ограничение суммарной потребляемой мощности по ±5 и +3,3 В.
  • В большинстве случаев используется импульсный блок питания, выполненный по полумостовой (двухтактной) схеме . Блоки питания с накапливающими энергию трансформаторами (обратноходовая схема) естественно ограничены по мощности габаритами трансформатора и потому применяется значительно реже.

    Устройство (схемотехника)

    Импульсный блок питания компьютера (ATX) со снятой крышкой: A - входной диодный выпрямитель , ниже виден входной фильтр ; B - входные сглаживающие конденсаторы , правее виден радиатор высоковольтных транзисторов ; C - импульсный трансформатор , правее виден радиатор низковольтных диодных выпрямителей ; D - дроссель групповой стабилизации ; E - конденсаторы выходного фильтра

    Широко распространённая схема импульсного источника питания состоит из следующих частей:

    Входные цепи

    • Отдельный маломощный блок питания, выдающий +5 В дежурного режима мат. платы и +12 В для питания микросхемы преобразователя самого ИБП. Обычно он выполнен в виде обратноходового преобразователя на дискретных элементах (либо с групповой стабилизацией вых. напряжений через оптрон плюс регулируемый стабилитрон TL431 в цепи ОС , либо линейными стабилизаторами 7805/7812 на выходе) или же (в топовых моделях) на микросхеме типа TOPSwitch.
    Преобразователь
    • Полумостовой преобразователь на двух биполярных транзисторах
    • Схема управления преобразователем и защиты компьютера от превышения/снижения питающих напряжений, обычно на специализированной микросхеме (TL494, UC3844, KA5800, SG6105 и пр.).
    • Импульсный высокочастотный трансформатор , который служит для формирования необходимых номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга). Пиковые напряжения на выходе высокочастотного трансформатора пропорциональны входному питающему напряжению и значительно превышают требуемые выходные.
    • Цепи обратной связи , которая поддерживает стабильное напряжение на выходе блока питания.
    • Формирователь напряжения PG (Power Good, «напряжение в норме»), обычно на отдельном ОУ .
    Выходные цепи
    • Выходные выпрямители. Положительные и отрицательные напряжения (5 и 12 В) используют одни и те же выходные обмотки трансформатора, с разным направлением включения диодов выпрямителя. Для снижения потерь, при большом потребляемом токе, в качестве выпрямителей используют диоды Шоттки , обладающие малым прямым падением напряжения.
    • Дроссель выходной групповой стабилизации. Дроссель сглаживает импульсы, накапливая энергию между импульсами с выходных выпрямителей. Вторая его функция - перераспределение энергии между цепями выходных напряжений. Так, если по какому-либо каналу увеличится потребляемый ток, что снизит напряжение в этой цепи, дроссель групповой стабилизации как трансформатор снизит напряжение по другим цепям. Цепь обратной связи обнаружит снижение выходных цепей, увеличит общую подачу энергии, и восстановит требуемые значения напряжений.
    • Выходные фильтрующие конденсаторы. Выходные конденсаторы, вместе с дросселем групповой стабилизации интегрирует импульсы, тем самым получая необходимые значения напряжений, которые значительно ниже напряжений с выхода трансформатора
    • Один (на одну линию) или несколько (на несколько линий, обычно +5 и +3,3) нагрузочных резисторов 10-25 Ом, для обеспечения безопасной работы на холостом ходу .

    Достоинства такого блока питания:

    • Простая и проверенная временем схемотехника с удовлетворительным качеством стабилизации выходных напряжений.
    • Высокий КПД (65-70 %). Основные потери приходятся на переходные процессы, которые длятся значительно меньшее время, чем устойчивое состояние.
    • Малые габариты и масса, обусловленные как меньшим выделением тепла на регулирующем элементе, так и меньшими габаритами трансформатора, благодаря тому, что последний работает на более высокой частоте.
    • Меньшая металлоёмкость, благодаря чему мощные импульсные источники питания стоят дешевле трансформаторных, несмотря на бо́льшую сложность
    • Возможность включения в сети широкого диапазона напряжений и частот, или даже постоянного тока. Благодаря этому возможна унификация техники, производимой для различных стран мира, а значит и её удешевление при массовом производстве.

    Недостатки полумостового блока питания на биполярных транзисторах:

    Стандарты

    AT (устаревший)

    В блоках питания у компьютеров форм-фактора выключатель питания разрывает силовую цепь и обычно вынесен на переднюю панель корпуса отдельными проводами; питание дежурного режима с соответствующими цепями отсутствует в принципе. Однако почти все материнские платы стандарта АТ+ATX имели выход управления блоком питания, а блоки питания, в то же время, вход, позволяющий материнской плате стандарта АТ управлять им (включать и выключать).

    Блок питания стандарта AT подключается к материнской плате двумя шестиконтактными разъёмами, включающимися в один 12-контактный разъём на материнской плате. К разъёмам от блока питания идут разноцветные провода, и правильным является подключение, когда контакты разъёмов с чёрными проводами сходятся в центре разъёма материнской платы. Цоколёвка AT-разъёма на материнской плате следующая:

    1 2 3 4 5 6 7 8 9 10 11 12
    -
    PG пустой +12V -12V общий общий общий общий -5V +5V +5V +5V

    ATX (современный)

    У 24-контактного ATX разъёма, последние 4 контакта могут быть съёмными, для обеспечения совместимости с 20-контактным гнездом на материнской плате

    Повышены требования к +5VDС - теперь БП должен отдавать ток не менее 12 А (+3.3 VDC - 16,7 А соответственно, но при этом совокупная мощность не должная превысить 61 Вт) для типовой системы потребления мощностью 160 Вт. Выявился перекос выходной мощности: раньше основным был канал +5 В, теперь были продиктованы требования по минимальному току +12 В. Требования были обусловлены дальнейшим ростом мощности комплектующих (в основном, видеокарты), чьи требования не могли быть удовлетворены линиями +5 В из-за очень больших токов в этой линии.

    Разъёмы БП / потребителей питания

    Распиновка SATA-разъёмов

    Разъём ATX PS 12V (P4 power connector)

    Один из двух шестиконтактных разъёмов питания AT

    • 20-контактный разъём основного питания +12V1DCV использовался с первыми материнскими платами форм-фактора ATX , до появления материнских плат с шиной PCI-Express .
    24-контактный разъём питания материнской платы ATX12V 2.x
    (20-контактный не имеет последних четырёх: 11, 12, 23 и 24)
    Цвет Сигнал Контакт Контакт Сигнал Цвет
    Оранжевый +3.3 V 1 13 +3.3 V Оранжевый
    +3.3 V sense Коричневый
    Оранжевый +3.3 V 2 14 −12 V Синий
    Чёрный Земля 3 15 Земля Чёрный
    Красный +5 V 4 16 Power on Зелёный
    Чёрный Земля 5 17 Земля Чёрный
    Красный +5 V 6 18 Земля Чёрный
    Чёрный Земля 7 19 Земля Чёрный
    Серый Power good 8 20 −5 V Белый
    Фиолетовый +5 VSB 9 21 +5 V Красный
    Жёлтый +12 V 10 22 +5 V Красный
    Жёлтый +12 V 11 23 +5 V Красный
    Оранжевый +3.3 V 12 24 Земля Чёрный
    Контакт 20 (и белый провод) используется для обеспечения −5 В постоянного тока в ATX и ATX12V версии до 1.2. Это напряжение не является обязательным уже в версии 1.2 и полностью отсутствует в версиях 1.3 и старше.
    В 20-контактной версии правые контакты нумеруются с 11 по 20.
    Провод +3.3 VDC оранжевого цвета и отводка +3.3 V sense коричневого цвета, подключенные к 13-му контакту, имеют толщину 18 AWG ; все остальные - 22 AWG

    Также на БП размещаются:

    КПД - «80 PLUS»

    Внешние изображения
    Чертеж БП FSP600-80GLN
    Сборочный чертеж БП FSP600-80GLN в формате PDF

    Производители компьютерных блоков питания

    • Cooler Master
    • Corsair

    См. также

    Примечания

    1. для соответствия требованиям законодательства стран по электромагнитным излучениям , в России - требованиям СанПиН 2.2.4.1191-03 2.2.4.1191-03.htm «Электромагнитные поля в производственных условиях, на рабочих местах. Санитарно-эпидемиологические правила и нормативы»
    2. Б.Ю. Семенов Силовая электроника: от простого к сложному. - М .: СОЛОМОН-Пресс, 2005. - 415 с. - (Библиотека инженера).
    3. На пиковой нагрузке +12 VDC, диапазон выходного напряжения +12 VDC может колебаться в пределах ± 10.
    4. Минимальное напряжение уровнем 11.0 VDC во время пиковой нагрузки по +12 V2DC.
    5. Выдержка в диапазоне требуется разъёму основного питания материнской платы и разъёму питания S-ATA .
    6. Совокупная мощность по линиям +3.3 VDC и +5 VDC не должная превысить 61 Вт
    7. Совокупная мощность по линиям +3.3 VDC и +5 VDC не должная превысить 63 Вт
    8. Совокупная мощность по линиям +3.3 VDC и +5 VDC не должная превысить 80 Вт

    Блок питания - это устройство, которое используется для создания напряжения, необходимого для работы компьютера, из напряжения домашней электросети. В России блок питания (в дальнейшем просто БП) преобразует переменный электрический ток домашней электрической сети напряжением 220 В и частотой 50 Гц в заданный постоянный ток. В разных странах стандарты домашней электросети отличаются. В США, к примеру, в дома обычных жителей подаётся переменный ток напряжением 120 В и частотой 60 Гц.

    Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника .

    Виды блоков питания и их различия.

    Существуют два основных вида блоков питания : трансформаторные и импульсные. Ниже будут рассмотрены их устройства и различия, а также преимущества и недостатки.

    Трансформаторный блок питания и его устройство.

    Этот вид блока питания является классическим и, одновременно, простейшим. Ниже представлена его схема с двухполероудным выпрямителем:

    Важнейшим элементом этого вида БП является понижающий трансформатор (вместо которого может быть использован автотрансформатор). Первичная обводка этого элемента как раз и рассчитана на входящее сетевое напряжение. Ещё одна важная деталь такого БП - это выпрямитель. Он выполняет функцию преобразования переменного напряжения в однонаправленное и пульсирующее постоянное. В подавляющем большинстве случаев используются однополупериодный выпрямитель или двухполупериодный. Первый состоит из одного диода, а последний из четырёх диодов, которые образуют диодный мост. В некоторых случаях могут использоваться и другие схемы этого элемента, например, в трёхфазных выпрямителях или выпрямителях с удвоенным напряжением. Последней важной деталью трансформаторного БП является фильтр, который сглаживает пульсации, создающиеся выпрямителем. Обычно эта деталь представлена конденсатором с большой ёмкостью.

    Габариты трансформатора. Из базовых законов электротехники выводится следующая формула:

    (1/n)~f*S*B

    В этой формуле n - это число витков на 1 вольт, f - частота переменного тока, S - площадь сечения магнитопровода, B - индукция магнитного поля в магнитопроводе.

    Формула описывает не мгновенное значение, а амплитуду B!

    Практически величина индукции магнитного поля (B) ограничена гистерезисом в сердечнике. Это приводит к перегревам трансформатора и потерям на перемагничивании.

    Если частота переменного тока(f) равна 50 Гц, то изменяемыми параметрами при конструировании трансформатора остаются только S и n. На практике используется такая эвристика: n (в значении от 55 до 70) / S в см^2

    Увеличение площади сечения магнитопровода (S) приводит к повышению габаритов и веса трансформатора. Если же понижать значение S то этим повышается значение n, что в трансформаторах небольшого размера приводит к снижению сечения провода (в противном случае обмотка не поместится на сердечнике)

    При увеличении значения n и уменьшения площади сечения происходит значительное увеличении активного сопротивления обмотки. В трансформаторах с малой мощностью на это можно не обращать внимания, поскольку ток, проходящий через обмотку, невелик. Однако, при повышении мощности ток, проходящий через обмотку, увеличивается, а это вместе с высоким сопротивлением обмотки приводит к рассеиванию значительной тепловой мощности.

    Всё вышесказанное приводит к тому, что стандартной частоте 50 Гц трансформатор большой мощности (необходимой для питания компьютера) может быть сконструирован только как устройство, имеющее большой вес и габариты.

    В современных БП идут по другому пути - увеличивания значения f, которое достигается использованием импульсных блоков питания . Такие БП намного легче и в значительной степени меньше по габаритам, чем трансформаторные. Также импульсные БП не столь требовательны к входному напряжению и частоте.

    Преимущества трансформаторных БП

    • Простота изделия;
    • Надёжность конструкции;
    • Доступность элементов;
    • Отсутствие создаваемых радиопомех.

    Недостатки трансформаторных БП

    • Большой вес и габариты, которые увеличиваются вместе с мощностью;
    • Металлоёмкость;
    • Необходимость компромисса между снижением КПД и стабильностью выходного напряжения.

    Импульсный БП и его устройство.

    Ниже представлена схема одноконтактного импульсного БП (эта схема является простейшей):

    Фактически блоки питания импульсного вида являются инверторной системой. В этом БП входящая в него электроэнергия сначала выпрямляется (т. е. образуется постоянный электрический ток), а после этого преобразуется в прямоугольные импульсы определённой частоты и скважности. После этого эти прямоугольные импульсы на трансформатор (в случае если конструкция БП включает в себя гальваническую развязку) или же сразу на выходной ФНЧ (в случае если отсутствует гальваническая развязка). Из-за того, что в импульсных БП с ростом частоты повышается эффективность работы трансформатора и в значительной степени снижается требование к сечению сердечника, в них могут применяться гораздо более малогабаритные трансформаторы чем в классических решениях.

    В большинстве случаев сердечник трансформатора импульсного вида может быть выполнен из ферримагнитных материалов, в отличии от низкочастотных трансформаторах, в которых используется электротехническая сталь.

    Стабилизация напряжения в импульсных блоках питания обеспечивается путём отрицательной обратной связи. Она позволяет поддерживать выходное напряжение на относительно постоянном уровне. Такая связь может быть сконструирована различными способами. В случае наличия в конструкции БП гальванической развязки чаще всего используют способ использования связи посредством одной из выходных обмоток трансформатора или же способ оптрона. Скважность на выходе ШИМ-контроллера зависит от сигнала обратной связи, который, в свою очередь, зависит от выходного напряжения. В том случае, если развязка в БП не предусмотрена, используется обычный резистивный делитель напряжения. Благодаря этому импульсные блоки питания могут поддерживать стабильное выходное напряжение.

    Достоинства импульсных БП.

    • Значительно меньший вес и габариты (это достигается благодаря тому, что при повышении частоты можно использовать трансформаторы с меньшими габаритами при одинаковой мощности. Большинство линейных стабилизаторов производятся в большинстве своём из мощных низкочастотных силовых трансформаторов и радиаторов, которые работают в линейном режиме;
    • Намного более высоким КПД (до 98%). Такой высокий коэффициент полезного действия достигается благодаря тому, что большую часть времени ключевые элементы находятся в устойчивом состоянии (а потери возникают во время включения/выключения ключевых элементов);
    • Меньшей стоимостью (это преимущество было достигнуто благодаря повсеместному выпуску унифицированной элементной базы и разработке транзисторов повышенной мощности);
    • Надёжностью наравне с линейными стабилизаторами;
    • Большим диапазоном входной частоты и напряжения электрической энергии. Благодаря этому один и тот же БП может использоваться в различных странах мира с различными стандартами домашней электрической сети;
    • Наличие защиты от непредвиденных ситуаций (короткое замыкание).

    Недостатки импульсных БП

    • Затруднение ремонта БП вследствие того, что большая часть схемы работает в отсутствии гальванической развязки электросети
    • Является источником высокочастотных помех. Этот недостаток выходит из самого принципа работы импульсных БП. Из-за него производителям блоков питания приходится предпринимать меры шумоподавления, которые, в большинстве случаев, не могут полностью устранить данную проблему
    • Эффект гармоник кратный трём (при наличии корректоров фактора мощности и фильтров данный недостаток неактуален)

    Ошибка в работе системы или нестабильность всего компьютера? Все мы привыкли винить во всём Windows, но часто неважнецкий БП может быть причиной проблемы. Не важно - собираетесь ли вы апгрейдить компьютер или же покупать новый системник - КитГуру поможет Вам в выборе блока питания.








    Зачем мне вообще нужен блок питания?

    В стенах твоего дома находятся двойные алюминиевые (иногда медные) провода, способные напитать электроэнергией устройства потребляющие более 7000 ватт (7 киловатт). Даже самый мощный и навороченный ПК на сегодня очень редко потребляет более 1 киловатта. Для работы компьютеров нам требуется качественный блок питания, способный конвертировать высокое напряжение из розетки в то низкое, что нужно компьютеру для его (компьютера со всеми компонентами) нормальной работы.

    Технологические факторы, влияющие на выбор БП

    Выбор БП зависит от того как много комплектующих (и то, сколько они кушают энергии) установлено в ПК. Например - разные видеокарты имеют разное количество и вид коннекторов. Некоторым видяхам достаточно того питания, что они получают через слот PCI-Express, в то время как жадные до питания карты типа Fermi (серия GeForce GTX4xx) помимо питания от PCIe нуждаются в дополнительных 6-и или 8-и пиновых коннекторах питания. Так же стоит учесть, что акустический шум, создаваемый блоком питания может отличаться от модели к модели и этот фактор определённо может повлиять на решение в пользу выбора того или иного БП, ровно как и его термические характеристики.

    Некоторые БП обладают уникальными свойствами/фичами (к примеру блок питания Nesteq EECS обладает системой управления кабелями, говоря проще - он модульный и лишние, не нужные в работе конкретного ПК, кабели можно просто отключить) и это так же стоит иметь в виду.

    Помимо этого стоит учесть одну вещь - если у Вас имеется недорогой ИБП (источник бесперебойного питания), то перед покупкой убедитесь, что понравившийся Вам блок питания имеет время Hold-up (время в которое система может работать без перезагрузки во время неполадок с питанием, измеряется в миллисекундах) больше, чем время реагирования источника бесперебойного питания.

    Я слышал о неких линиях питания, сколько мне их нужно?

    Это теперь настоящая маркетинговая война, нежели чем простое отличие внутреннего строения БП.

    Существует мнение что БП, работающие с несколькими линиями питания 12V, безопаснее своих собратьев с одной, но большой (мощной), 12V линией, БП с таким устройством чаще используются энтузиастами, отрицающими возможность слабой 12V линии быть перегруженной одним устройством, жадным до электроэнергии.

    Говоря на чистоту, дабы избежать недопонимания... Блоки питания High-End-класса от ведущих производителей, которые используют несколько линий 12V - все они созданы таким образом, что каждая такая линия питания превосходит спецификации безопасности ATX.

    Те же БП, что с одной очень мощной 12V линией - опасны, потому что люди пытаются вообразить катастрофические события в ходе которых вся электроэнергия поступает на один разъём, кабель в котором само-собой плавится и даже вызывает пожар. Тут обычно приводят пример в котором неисправный компонент не вызывает короткое замыкание. Производители качественных БП внедряют в свои продукты решения, которые позволяют быть уверенными в том, что подобное никогда не случится и именно поэтому столь катастрофические явления очень редки (хотя есть интересная байка о французском журналисте, что попал в госпиталь во время тестирования "БП от известного бренда", в общем история продолжается).

    Эффективность: как много энергии расходуется впустую?

    Обычно, если в ходе своей работы, БП теряет ~20% потребляемой электроэнергии, он считается эффективным. Совет - ищите стикер "80Plus" на новых БП. И помните - более эффективный блок питания тот, что переводит меньше энергии в тепло, это означает что эффективные БП не только экономят Ваши денежки, но и работают тише. Вот таблица спецификаций 80Plus блоков питания:

    Типы тестовых 80 PLUS 115V внутренние без избыточности 230V внутренние резервные

    Процент от номинальной

    нагрузки

    20% 50% 100% 20% 50% 100%
    80% 80% 80% Не определено
    82% 85% 82% 81% 85% 81%
    85% 88% 85% 85% 89% 85%
    87% 90% 87% 88% 92% 88%

    80 PLUS Platinum

    Не определено 90% 94% 91%


    Сколько же мощности мне нужно?

    Блоки питания разработаны так, чтобы постоянно работать на 50-60 процентов от своей максимальной мощности, а не в режиме полной постоянной загрузки. Заставлять работать БП на его полной мощности продолжительное время означает не только снижение энерго-эффективности его работы, но и повышенный износ устройства. Будьте осторожны, хардкорные любители фолдинга!

    Кстати - большинство онлайновых калькуляторов энергопотребления ПК удваивают реальные аппетиты системы. Для примера они увеличивают показатель TPD ваших компонентов, только чтобы обезопасить Вас в будущем.

    Неэффективность случается на обеих сторонах шкалы (WTF?!)
    Если Вы приобрели слишком крутой БП для своего ПК это негативно скажется на эффективности его (БП) работы. Очень важно выбрать блок питания с правильным количеством ватт.

    Продвинутые пользователи ПК могут иметь две или больше графических карт в своих системах, а ПК большинства пользователей куда менее "прожорливы". Вот три типичных сценария:

    Видеокарта Процессор Прочее Итого Подходящий БП
    Продвинутый пользователь
    250 ватт 100 ватт 80 ватт 430 ватт ?850 ватт
    Обычный геймер
    120 ватт 80 ватт 60 ватт 260 ватт ?500 ватт
    Простой юзер
    50 ватт 50 ватт 60 ватт 160 ватт ?350 ватт

    Цена блока питания может варьировать от 10 фунтов стерлингов до 200, а количество их на рынке огромно, есть из чего выбрать. Выбор так же осложняет тип БП - модульный он или нет, само-собой и на цену это влияет. Модульные - дороже, но не стоит забывать про улучшенный воздушный поток, лёгкость в апгрейде и более шустрое время сбора ПК с таким БП.

    Производители качественных блоков питания

    На самом деле большинство разных БП сделаны на одних и тех же фабриках. Однако каждый состоит из разных компонентов, обладает собственными фичами, уровнем шума или эффективностью, а так же сроком гарантийного ремонта. Стоит обратить внимание на продукцию (в алфавитном порядке) Antec, BeQuiet, Coolermaster, Corsair, Enermax, FSP, OCZ, Seasonic и Thermaltake.

    Что нравится КитГуру?

    Если выбирать из БП, мощностью до 600 ватт, мы предпочли бы OCZ XStream и Antec EarthWatts.

    От 600 до 775 ватт отличным выбором стали бы Coolermaster (Silent Pro), Thermaltake (Toughpower XT) и Corsair (TX).

    Свыше 800 ватт - однозначно BeQuiet, Corsair и Enermax. Для ультра-хай-энд рынка Thermaltake готовит 1500 ваттник, которого хватило бы на много лет вперёд, подобные разработки ведёт и Antec.

    Вольный перевод материала с портала КитГуру , все права защищены.

    Вторичные источники питания являются неотъемлемой частью конструкции любого радиоэлектронного устройства. Они предназначены для того, чтобы преобразовывать переменное или постоянное напряжение электросети или аккумулятора в постоянное или переменное напряжение, требуемое для работы устройства, это блоки питания.

    Источники питания бывают не только включены в схему какого-либо устройства, но и могут выполнятся в виде отдельного блока и даже занимать целые цеха электроснабжения.

    К блокам питания предъявляется несколько требований. Среди них: высокий КПД, высокое качество выходного напряжения, наличие защит, совместимость с сетью, небольшие размеры и масса и др.

    Среди задач блока питания могут числится:

    • Передача электрической мощности с минимумом потерь;
    • Трансформация одного вида напряжения в другое;
    • Формирование частоты отличной от частоты тока источника;
    • Изменение величины напряжения;
    • Стабилизация. Блок питания должен на выходе выдавать стабильный ток и напряжение. Эти параметры не должны превышать или быть ниже определенного предела;
    • Защита от короткого замыкания и других неисправностей в источнике питания, которые могут привести к поломке устройства, которое обеспечивает блок питания;
    • Гальваническая развязка. Метод защиты от протекания выравнивающих и других токов. Такие токи могут приводить к поломкам оборудования и поражать людей.

    Но зачастую перед блоками питания в бытовых приборах стоят только две задачи – преобразовывать переменное электрическое напряжение в постоянное и преобразовывать частоту тока электросети.

    Среди блоков питания наиболее распространены два типа. Они различаются по конструкции. Это линейные (трансформаторные) и импульсные блоки питания.

    Линейные блоки питания

    Изначально источники питания изготавливались только в таком виде. Напряжение в них преобразовывается силовым трансформатором. понижает амплитуду синусоидальной гармоники, которая затем выпрямляется диодным мостом (бывают схемы с одним диодом). преобразуют ток в пульсирующий. А далее пульсирующий ток сглаживается с помощью фильтра на конденсаторе. В конце ток стабилизируется с помощью .

    Чтобы просто понять, что происходит, представьте себе синусоиду – именно так выглядит форма напряжения, поступающего в наш блок питания. Трансформатор как бы сплющивает эту синусоиду. Диодный мост горизонтально рубит ее пополам и переворачивает нижнюю часть синусоиды наверх. Уже получается постоянное, но все еще пульсирующее напряжение. Фильтр конденсатора доделывает работу и «прижимает» эту синусоиду до такой степени, что получается почти прямая линия, а это и есть постоянный ток. Примерно так, возможно, чересчур просто и грубо, можно описать работу линейного блока питания.

    Плюсы и минусы линейных БП

    К преимуществам относится простота устройства, его надежность и отсутствие высокочастотных помех в отличие от импульсных аналогов.

    К недостаткам можно отнести большой вес и размер, увеличивающиеся пропорционально мощности устройства. Также триоды, идущие в конце схемы и стабилизирующие напряжение снижают КПД устройства. Чем стабильнее напряжение, тем большие его потери будут на выходе.

    Импульсные блоки питания

    Импульсные блоки питания такой конструкции появились в 60-ых годах прошлого века. Они работают по принципу инвертора. То есть, не только преобразуют постоянное напряжение в переменное, но и меняют его величину. Напряжение из электросети попадая в прибор выпрямляется входным выпрямителем. Затем амплитуда сглаживается входными конденсаторами. Получаются высокочастотные импульсы прямоугольной формы с определенным повторением и длительностью импульса.

    Дальнейший путь импульсов зависит от конструкции блока питания:

    • В блоках с гальванической развязкой импульс попадает в трансформатор.
    • В БП без развязки импульс идет сразу на выходной фильтр, который срезает нижние частоты.
    Импульсный БП с гальванической развязкой

    Высокочастотные импульсы из конденсаторов попадают в трансформатор, который отделяет одну электрическую цепь от другой. В этом и заключается суть . Благодаря высокой частотности сигнала эффективность трансформатора повышается. Это позволяет снизить в импульсных БП массу трансформатора и его размеры, а, следовательно, и всего устройства. В в качестве сердечника используются ферромагнитные соединения. Это также позволяет снизить габариты устройства.

    Конструкция такого типа предполагает преобразование тока в три этапа:

    1. Широтно-импульсный модулятор;
    2. Транзисторный каскад;
    3. Импульсный трансформатор.

    Что такое широтно-импульсный модулятор

    По-другому этот преобразователь называется ШИМ-контроллер. Его задача состоит в том, чтобы изменять время, в течении которого будет подаваться импульс прямоугольной формы. меняет время, в течении которого импульс остается включенным. Он меняет время, в которое импульс не подается. Но частота подачи при этом остается одинаковой.

    Как стабилизируется напряжение в импульсных БП

    Во всех импульсных БП реализован вид обратной связи, при котором с помощью части выходного напряжения компенсируется влияние входного напряжения на систему. Это позволяет стабилизировать случайные входные и выходные изменения напряжения

    В системах с гальванической развязкой для создания отрицательной обратной связи применяются . В БП без развязки обратная связь реализована делителем напряжения.

    Плюсы и минусы импульсных БП

    Из плюсов можно выделить меньшую массу и размеры. Высокий КПД, за счет снижения потерь, связанных с процессами перехода в электрических цепях. Меньшая цена в сравнении с линейными БП. Возможность использования одних и тех же БП в разных странах мира, где параметры электросети отличаются между собой. Наличие защиты от короткого замыкания.

    Недостатками импульсных БП является их невозможность работы на слишком высоких или слишком низких нагрузках. Не подходят для отдельных видов точных устройств, поскольку создают радиопомехи.

    Применение

    Линейные блоки питания активно вытесняются их импульсными аналогами. Сейчас линейные БП можно встретить в стиральных машинах, СВЧ-печах, системах отопления.

    Импульсные БП применяются почти везде: в компьютерной технике и телевизорах, в медицинской технике, в большинстве бытовых приборов, в оргтехнике.



    Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png