Современный смартфон уже сложно назвать просто компьютером, ведь он умеет гораздо больше своего стационарного предка: и температуру может измерить, и высоту над уровнем моря подсказать, и влажность воздуха определить, а если вдруг забудешь свою ориентацию в пространстве или силу тяжести потеряешь - все исправит. А помогают ему в этом, как ты уже, наверное, догадался, датчики aka сенсоры. Сегодня мы познакомимся с ними поближе, а заодно и проверим, действительно ли мы находимся на Земле. 😉

Датчики всякие нужны!

Для работы с аппаратными датчиками, доступными в устройствах под управлением Android, применяется класс SensorManager , ссылку на который можно получить с помощью стандартного метода getSystemService :

SensorManager sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);

Чтобы начать работать с датчиком, нужно определить его тип. Удобнее всего это сделать с помощью класса Sensor , так как в нем уже определены все типы сенсоров в виде констант. Рассмотрим их подробнее:

  • Sensor.TYPE_ACCELEROMETER - трехосевой акселерометр, возвращающий ускорение по трем осям (в метрах в секунду в квадрате). Связанная система координат представлена на рис. 1.
  • Sensor.TYPE_LIGHT - датчик освещенности, возвращающий значение в люксах, обычно используется для динамического изменения яркости экрана. Также для удобства степень освещенности можно получить в виде характеристик - «темно», «облачно», «солнечно» (к этому мы еще вернемся).
  • Sensor.TYPE_AMBIENT_TEMPERATURE - термометр, возвращает температуру окружающей среды в градусах Цельсия.
  • Sensor.TYPE_PROXIMITY - датчик приближенности, который сигнализирует о расстоянии между устройством и пользователем (в сантиметрах). Когда в момент разговора гаснет экран - срабатывает именно этот датчик. На некоторых девайсах возвращается только два значения: «далеко» и «близко».
  • Sensor.TYPE_GYROSCOPE - трехосевой гироскоп, возвращающий скорость вращения устройства по трем осям (радиан в секунду).
  • Sensor.TYPE_MAGNETIC_FIELD - магнитометр, определяющий показания магнитного поля в микротеслах (мкТл) по трем осям (имеется в смартфонах с аппаратным компасом).
  • Sensor.TYPE_PRESSURE - датчик атмосферного давления (по-простому - барометр), который возвращает текущее атмосферное давление в миллибарах (мбар). Если немного вспомнить физику, то, используя значение этого датчика, можно легко вычислить высоту (а ежели вспоминать ну никак не хочется, можно воспользоваться готовым методом getAltitude из объекта SensorManager ).
  • Sensor.TYPE_RELATIVE_HUMIDITY - датчик относительной влажности в процентах. Кстати, совместное применение датчиков относительной влажности и давления позволяет предсказывать погоду - конечно, если выйти на улицу. 😉
  • Sensor.TYPE_STEP_COUNTER (с API 19) - счетчик шагов с момента включения устройства (обнуляется только после перезагрузки).
  • Sensor.TYPE_MOTION_DETECT (с API 24) - детектор движения смартфона. Если устройство находится в движении от пяти до десяти секунд, возвращает единицу (по всей видимости, задел для аппаратной функции «антивор»).
  • Sensor.TYPE_HEART_BEAT (с API 24) - детектор биения сердца.
  • Sensor.TYPE_HEART_RATE (с API 20) - датчик, возвращающий пульс (ударов в минуту). Этот датчик примечателен тем, что требует явного разрешения android.permission.BODY_SENSORS в манифесте.

Перечисленные датчики являются аппаратными и работают независимо друг от друга, часто без всякой фильтрации или нормализации значений. «Для облегчения жизни разработчиков»™ Google ввела несколько так называемых виртуальных сенсоров, которые предоставляют более упрощенные и точные результаты.

Например, датчик Sensor.TYPE_GRAVITY пропускает показания акселерометра через низкочастотный фильтр и возвращает текущие направление и величину силы тяжести по трем осям, а Sensor.TYPE_LINEAR_ACCELERATION использует уже высокочастотный фильтр и получает показатели ускорения по трем осям (без учета силы тяжести).

При разработке приложения, эксплуатирующего показания сенсоров, вовсе не обязательно бегать по улице или прыгать в воду с высокой скалы, так как эмулятор, входящий в поставку Android SDK, умеет передавать приложению любые отладочные значения (рис. 2–3).


Ищем датчики

Чтобы узнать, какие сенсоры есть в смартфоне, следует использовать метод getSensorList объекта SensorManager :

List sensors = sensorManager.getSensorList(Sensor.TYPE_ALL);

Полученный список будет включать все поддерживаемые датчики: как аппаратные, так и виртуальные (рис. 4). Более того, некоторые из них будут иметь различные независимые реализации, отличающиеся количеством потребляемой энергии, задержкой, рабочим диапазоном и точностью.

Для получения списка всех доступных датчиков конкретного типа необходимо указать соответствующую константу. Например, код

List pressureList = sensorManager.getSensorList(Sensor.TYPE_PRESSURE);

вернет все доступные барометрические датчики. Причем аппаратные реализации окажутся в начале списка, а виртуальные - в конце (правило действует для всех типов датчиков).


Чтобы получить реализацию датчика по умолчанию (такие датчики хорошо подходят для стандартных задач и сбалансированы в плане энергопотребления), используется метод getDefaultSensor :

Sensor defPressureSensor = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE);

Если для заданного типа датчика существует аппаратная реализация, по умолчанию будет возвращена именно она. Когда нужного варианта нет, в дело вступает виртуальная версия, ну а если, увы, ничего подходящего в девайсе не окажется, getDefaultSensor вернет null .

О том, как самолично выбирать реализацию датчиков по критериям, написано во врезке, мы же плавно двигаемся дальше.

Снимаем показания

Чтобы получать события, генерируемые датчиком, необходимо зарегистрировать реализацию интерфейса SensorEventListener с помощью того же SensorManager . Звучит сложновато, но на практике реализуется одной строчкой:

Sensor defPressureSensor = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE); sensorManager.registerListener(workingSensorEventListener, defPressureSensor, SensorManager.SENSOR_DELAY_NORMAL);

Здесь мы полученный ранее барометр по умолчанию регистрируем с помощью метода registerListener , передавая в качестве второго параметра сенсор, а в качестве третьего - частоту обновления данных.

В классе SensorManager определены четыре статические константы, определяющие частоту обновления:

  • SensorManager.SENSOR_DELAY_FASTEST - максимальная частота обновления данных;
  • SensorManager.SENSOR_DELAY_GAME - частота, обычно используемая в играх, поддерживающих гироскоп;
  • SensorManager.SENSOR_DELAY_NORMAL - частота обновления по умолчанию;
  • SensorManager.SENSOR_DELAY_UI - частота, подходящая для обновления пользовательского интерфейса.

Нужно сказать, что, указывая частоту обновления, не стоит ожидать, что она будет строго соблюдаться. Как показывает практика, данные от сенсора могут приходить как быстрее, так и медленнее.

Оставшийся нерассмотренным первый параметр представляет собой реализацию интерфейса SensorEventListener , где мы наконец-то получим конкретные цифры:

Private final SensorEventListener workingSensorEventListener = new SensorEventListener() { public void onAccuracyChanged(Sensor sensor, int accuracy) { } public void onSensorChanged(SensorEvent event) { // Получаем атмосферное давление в миллибарах double pressure = event.values; } };

В метод onSensorChanged передается объект SensorEvent , описывающий все события, связанные с датчиком: event.sensor - ссылка на датчик, event.accuracy - точность значения датчика (см. ниже), event.timestamp - время возникновения события в наносекундах и, самое главное, массив значений event.values . Для датчика давления передается только один элемент, тогда как, например, для акселерометра предусмотрено сразу три элемента для каждой из осей. В следующих разделах мы рассмотрим примеры работы с различными датчиками.

Метод onAccuracyChanged позволяет отслеживать изменение точности передаваемых значений, определяемой одной из констант: SensorManager.SENSOR_STATUS_ACCURACY_LOW - низкая точность, SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM - средняя точность, возможна калибровка, SensorManager.SENSOR_STATUS_ACCURACY_HIGH - высокая точность, SensorManager.SENSOR_STATUS_UNRELIABLE - данные недостоверны, нужна калибровка.

После того как отпадает необходимость работы с датчиком, следует отменить регистрацию:

SensorManager.unregisterListener(workingSensorEventListener);

Меряем давление и высоту

Весь код для работы с датчиком давления мы уже написали в предыдущем разделе, получив в переменной pressure вполне себе значение атмосферного давления в миллибарах.

Продолжение доступно только подписчикам

Вариант 1. Оформи подписку на «Хакер», чтобы читать все материалы на сайте

Подписка позволит тебе в течение указанного срока читать ВСЕ платные материалы сайта. Мы принимаем оплату банковскими картами, электронными деньгами и переводами со счетов мобильных операторов.

Для чего нужны и как работают акселерометр, гироскоп, магнитометр и GPS.

Ваш смартфон - настоящее произведение инженерного искусства. Он сочетает в себе функции по меньшей мере десятка разных гаджетов. И большей частью своих удивительных возможностей он обязан разнообразным сенсорам. Но каким именно и как они устроены?

Как телефон подсчитывает ваши шаги? Расходует ли GPS ваш трафик? На какие датчики нужно обратить внимание при выборе нового телефона? Вот все, что вам нужно знать о современном смартфоне.

Акселерометр

Один из наглядных примеров работы акселерометра - анимированные стикеры Snapchat

Акселерометр отслеживает изменение скорости движения устройства и его повороты вокруг своей оси. Такие датчики устанавливаются не только в телефонах, но и в фитнес-трекерах - именно с их помощью смартфон может подсчитывать ваши шаги, даже если у вас нет никаких носимых гаджетов.

Анализируя данные акселерометра, приложения могут определить, в какую сторону направлен телефон, - эта технология находит все более широкое применение с распространением дополненной реальности.

Существуют различные типы акселерометров, но самый распространенный - пьезоэлектрический. В таких акселерометрах сенсор представляет собой микроскопический кристалл, который деформируется под действием сил ускорения. При этом кристалл вырабатывает электрический ток. Анализируя силу тока, система определяет, как быстро и в каком направлении движется ваш телефон. Поэтому Snapchat добавляет на карту забавный стикер с автомобилем, когда вы используете приложение за рулем.

Акселерометр является одним из самых важных датчиков вашего телефона: без него вы не могли бы пользоваться автоматическим поворотом экрана, а навигационные приложения не могли бы определять текущую скорость.

Гироскоп

Гироскоп дает точные данные о положении смартфона в пространстве, что бывает полезно в играх и при создании 360-градусных фотографий

Гироскоп помогает акселерометру с гораздо более высокой точностью определить, как именно ваш телефон ориентирован в пространстве. Поэтому 360-градусные панорамы выглядят так впечатляюще.

Всякий раз, когда вы запускаете на смартфоне гоночный симулятор и наклоняете экран, чтобы повернуть руль, именно гироскоп помогает приложению понять, что вы делаете. Поскольку при этом вы не перемещаетесь в пространстве, этих условий было бы недостаточно недостаточно для работы акселерометра.

Гироскопы используются не только в телефонах. Их можно найти в самолетах, где они помогают определить высоту и положение, и в системах стабилизации, которые позволяют фото- и видеокамерам делать плавную съемку в движении.

Старые гироскопы, которые еще можно найти в самолетных высотомерах, используют механическое движение маховика, но гироскоп в вашем смартфоне представляет собой микроэлектромеханическую систему (МЭМС) - крошечный инерциальный датчик, который может поместиться на печатной плате.

Впервые МЭМС-гироскопы были использованы в iPhone 4 в 2010 году - и произвели фурор: никогда еще телефон не умел определять свою ориентацию в пространстве с такой точностью. Сегодня мы считаем это чем-то само собой разумеющимся.

Магнитометр

Именно благодаря магнитометру работает компас в вашем телефоне.

Последний из трех главных датчиков, ответственных за определение положения телефона в пространстве, - это магнитометр. Его название говорит само за себя: он регистрирует магнитные поля и таким образом может определить, в каком направлении находится север.

Когда вы включаете режим компаса на Картах Apple или в Google Maps, именно магнитометр определяет, как нужно развернуть карту. Существуют и отдельные приложения, которые эмулируют работу компаса.

Магнитометры также можно найти в металлодетекторах - они могут обнаруживать магнитные металлы. Существуют даже приложения-металлодетекторы для смартфона!

Сам по себе этот датчик мало на что способен, но если соединить его показания с данными, поступающими с акселерометра и модуля GPS, можно точно определить ваше расположение, что очень полезно при построении маршрутов.

Спутники GPS всегда знают, где находится ваш телефон.

Ах, GPS, где бы мы были без тебя? Вероятно, блуждали бы где-то в глуши, проклиная день, когда решили сменить бумажные карты, компас и секстант на электронные устройства.

GPS-модуль в вашем телефоне связываются со спутниками на орбите, чтобы определить, где именно на поверхности планеты вы находитесь. Для этого даже не нужна сотовая сеть: если ваш телефон потерял сигнал, вы все равно можете видеть свое местоположение, хотя загрузить подробную карту вам, скорее всего, не удастся.

Фактически телефон поочередно связывается с несколькими спутниками, а затем вычисляет, где вы находитесь, по задержке сигнала. Если связаться со спутниками не удается, - например, когда вы находитесь в помещении или под очень плотной облачностью, - определить ваше положение не получится.

GPS не расходует трафик, но связь со спутниками и вычисления могут сильно сказаться на заряде батареи, поэтому многие руководства рекомендуют отключать GPS-навигацию, чтобы дольше оставаться на связи. По этой же причине модуль GPS обычно не включается в более мелкие устройства - например, в большинство смарт-часов.

GPS- не единственный способ определить ваше положение на карте: его можно приблизительно установить по расстоянию до сотовых вышек. Однако высокой точности без него не добиться. Современные GPS-модули объединяют данные от спутников с показаниями компаса и уровнем сигнала сети, чтобы определить ваше местоположение с точностью до нескольких метров.

Лучшие из остальных датчиков

Если хотите, ваш телефон будет регулировать яркость экрана в соответствии с окружающим освещением.

Несмотря на компактные размеры, современный смартфон вмещает мощные элементы, среди которых камера с линзами и автофокусом, процессор,емкостная батарея и всевозможные датчики, позволяющие использовать гаджет больше чем просто «звонилку». Давайте детально разберем, для чего эти датчики и как они работают.

Датчик света в смартфоне

Это один из самых обязательных датчиков. Представляет собой полупроводниковый сенсор, находящийся рядом с разговорным динамиком. Основная его функция — экономия энергии батареи. Он улавливает поток фотонов и регулирует яркость подсветки экрана. Чаще всего работает в тандеме с датчиком приближения.

Датчик приближения

Это сенсор, который находится рядом с датчиком света и отключает экран. Он посылает сигнал предмету, если он отражается, то датчик реагирует отключением экрана. Например, так происходит, когда подносишь смартфон к уху.

Акселерометр (G-сенсор)

Данный сенсор представляет собой эл. механический прибор, фиксирующий все движения смартфона. Его задача переключать экран при наклоне устройства, фиксировать жесты, участвовать в управлении игр, подсчитывать шаги. Он бывает 2-х и 3-х осевым. В последнем случае при покое одна из осей будет показывать 9-10 м/с2. Например, на неподвижный телефон акселерометр не реагирует, поэтому в играх точность снижена. Практически всегда работает в паре с гироскопом.

Гироскоп в телефоне

Эта электромеханическая схема определяет положение смартфона в пространстве, учитывает его неподвижность. Он очень точен, погрешность не более 1-2°. Вместе с акселерометром используется в игровых приложениях, при управлении жестами.

Магнитометр в телефоне

Определяет магнитное поле земли, измеряет положение в 3-х мерном пространстве. Главная функция этого сенсора – наиболее точно определить местоположение при отсутствии GPS-сигнала. Другими словами, это цифровой компас, информирующий, в каком направлении относительно севера перемещается смартфон. С помощью его и специального приложения можно искать проводку в стенах.

Это были наиболее продвинутые датчики, находящиеся даже в бюджетных смартфонах. Более дорогие гаджеты могут иметь дополнительные сенсоры.

Барометр (датчик давления)

Вместе с магнитометром он помогает смартфону быстрее определить свое местонахождение, поймать GPS-сигнал. Прямое назначение – показывать атмосферное давление и высоту над уровнем моря. Чем выше поднимаешься, тем меньше давление. На показания влияет атмосферное давление, поэтому данные могут быть не точными.

Температурные датчики

Хороший смартфон напичкан цифровыми термометрами. Конструктивно это резисторы с двумя выводами, в зависимости от температуры между выводами меняется сопротивление. Так мы узнаем температуру батареи, процессора и разных контроллеров. Именно он отключает зарядку, чтобы не закипел электролит батареи. Очень редко встречаются датчики окружающей среды. Они себя не зарекомендовали, ведь внутренняя температура в смартфоне и температура от рук искажают данные.

Гигрометр

Измеряет влажность воздуха, особо не распространен, последний раз использовался в Galaxy S4. Ориентируясь на его показания можно включить прибор для увлажнения или осушения воздух в помещении.

Пульсометр

Это сенсор для измерения сердечного сокращения (пульса). С его помощью корректируют нагрузки в процессе тренировок. Этим датчиком смартфон должен плотно прилегать к кровеносным сосудам. Предустановлен в Galaxy S5, S7 (S7 Edge). Чаще всего применяется в трекерах и смарт-часах.

Сканер отпечатков пальцев

Данный сенсор завоевывает все больше популярности. Он мгновенно разблокирует девайс без ввода пароля и надежно защищает данные на устройстве. Сегодня даже малоизвестные производители смартфонов стараются оснастить им свои детища. Первым среди смартфонов его получил iPhone 5S.

Сканер сетчатки глаза

В 2016 году печально известный Samsung Galaxy Note 7 был оснащен этим датчиком. По скорости он не уступает сканеру отпечатка пальцев. ИК-луч сканирует радужную сетчатку глаза, фиксирует ее и кодирует в алгоритм, с которым в последствие и сравнивается. Примечательно, что он работает даже в темноте, идентифицирует через прозрачные очки и линзы.

Современный смартфон премиум-класса имеет не менее 12 датчиков, среди лидеров iPhone, Samsung Galaxy, HTC. А сколько датчиков на вашем смартфоне?

Современный смартфон – это сложное высокотехнологичное вычислительное устройство, которое мощнее тысяч бортовых компьютеров, полвека назад запускавших «Аполлоны» на Луну. Датчиков на борту флагманских мобильников тоже установлено едва не больше, чем на борту этого самого «Аполлона». Каждый из них незаметно, но добросовестно выполняет свою работу. Чем же занимаются все эти датчики смартфона, и как они устроены – подробнее читайте далее.

Сенсор освещения в смартфоне расположен на передней панели, обычно возле разговорного динамика (бывают исключения). Конструкционно он представляет полупроводниковый сенсор, чувствительный к потоку фотонов. В зависимости от его интенсивности, сенсор осуществляет управление подсветкой дисплея, с целью более эффективно расходовать заряд аккумулятора. Также он может выполнять вспомогательную функцию для других задач, работая с датчиком приближения.

Датчик приближения

Это – оптический или ультразвуковой сенсор, определяющий, нет ли предметов перед экраном. Он посылает очень слабый световой или звуковой импульс, а если тот отразился – регистрирует отраженный сигнал. За счет этого осуществляется автоматическая блокировка экрана в режиме разговора или при перевороте смартфона дисплеем вниз. Традиционно сенсор приближения откалиброван таким образом, что регистрирует лишь 2 состояния: «посторонний предмет ближе N (обычно 5) сантиметров» и «посторонний предмет дальше N см».

Акселерометр

Этот сенсор смартфона расположен на плате и представляет собой миниатюрный электромеханический прибор, регистрирующий малейшие движения. В обязанности этого датчика входит переключение ориентации экрана смартфона при наклоне, управление в играх, регистрация особых жестов управления (вроде потряхивания или постукивания по корпусу), а также замер шагов (путем подсчета ритмических колебаний в процессе ходьбы).

Обычный двухосевой акселерометр в смартфоне

Бывают двухосевые и трехосевые акселерометры. Особенностью акселерометра является то, что в состоянии покоя - одна из осей всегда будет показывать значение в районе 9-10 м/с 2 (в трехосевом трехмерном акселерометре). Это связанно с тем, что сила тяжести Земли составляет в среднем 9,8 м/с 2 .

Гироскоп

Гироскоп отвечает за определение движения и ориентации смартфона в пространстве. Он тоже конструкционно представляет MEMS (микроэлектромеханическую схему), расположенную на системной плате. Сферы его применени пересекаются с таковыми у акселерометра. Основные отличия состоят в том, что гироскоп имеет заметно большую точность и измеряет движение не в м/с 2 , а радианах или градусах на секунду. За счет этого его можно использовать для отслеживания поворотов головы в VR-гарнитуре, а также более точно реализовать жестовое управление.

Гироскоп MEMS под микроскопом

Магнитометр и датчик Холла

Магнитометр измеряет величину магнитного поля окружающего мира. Он также проводит измерения в трехмерном пространстве (по трем осям декартовых координат - X, Y и Z). Основная функция магнитометра – более точное определение местоположения в ходе навигации. В этом режиме использования он выполняет функцию цифрового компаса. Благодаря тому, что одна из осей, которая расположена в плоскости с Северным полюсом Земли, регистрирует постоянно повышенный фон. Магнитометр помогает более точно определять, в какую сторону относительно севера движется смартфон.

Магнитометр смартфона

Часто магнитометр называют датчиком Холла, однако это не совсем тождественные понятия. Подробнее о датчике Холла мы писали в другой статье . Отличия состоят в том, что первый является более универсальным и чувствительным. Магнитометр способен производить замеры магнитного излучения, в то время как только регистрирует его наличие/отсутствие и уменьшение/усиление. В современных смартфонах отдельный датчик Холла обычно не ставят, так как универсальный магнитометр полностью покрывает его функциональность.

Одной из альтернативных функций магнитометра является поиск проводки в стенах. Проводник под напряжением генерирует слабое электромагнитное излучение, а чувствительность сенсора составляет единицы микротесла. Если водить смартфоном по стене, то в месте заложения кабеля магнитный фон будет повышенным.

Датчик гравитации

Измеряет силу притяжения нашей планеты в трехмерном пространстве. В состоянии покоя (когда смартфон лежит на столе), его показания должны совпадать с акселерометром: по одной из осей сила гравитации будет близка к 9,8 м/с 2 . Самостоятельно этот сенсор обычно не используется, но помогает работе других. В режиме навигации он определяет, в какой стороне земная поверхность, чтобы быстрее определить правильное положение смартфона. При использовании в VR за счет сенсора гравитации осуществляется правильное позиционирование картинки.

Датчик линейного ускорения в смартфоне

Принцип его работы практически идентичен акселерометру, единственное отличие кроется в инертности. То есть, показания этого сенсора не зависят ни от каких глобальных внешних факторов (вроде гравитации). Единственное, что он регистрирует – это скорость перемещений смартфона в пространстве относительно его прежнего положения.

Определять положение аппарата в пространстве датчик линейного ускорения не способен (нет привязки к внешним ориентирам), но это и не нужно (с данной задачей отлично справляются сенсор гравитации и акселерометр). Отсутствие привязки к внешним ориентирам позволяет поворачивать объекты на дисплее безотносительно этих ориентиров, например, в играх. Также данный сенсор, в совокупности с другими, повышает общую точность определения движений.

Датчик вращения

Он определяет направление и частоту вращения смартфона относительно одной из осей трехмерного пространства. Как и датчик ускорения, является независимым и не привязан к внешним ориентирам. Часто выполняется в составе одного модуля с сенсором линейного ускорения. Отдельно, как правило, не задействуется, но позволяет корректировать работу других сенсоров для повышения точности. Также помогает при управлении жестами, например, покрутив смартфон в кисти руки активируется камера.

Гироскоп MEMS в разрезе

Температурные датчики

Современный смартфон обильно напичкан цифровыми термометрами. Конструкционно они представляют собой термопару: резистор с двумя выводами, сопротивление между которыми меняется в зависимости от температуры. Так как он относительно примитивен, то может быть выполнен даже внутри полупроводникового чипа.

В каждом смартфоне обязательно имеется датчик температуры батареи. При ее перегреве он отключает зарядку или снижает силу тока на выходе, чтобы предотвратить закипание электролита, которое влечет возгорание или взрыв. Также распространены термометры внутри SoC (в количестве от пары штук – до десятка и более). Они измеряют температуры процессорных ядер, графического ускорителя, различных контроллеров. Иногда встречаются и датчики окружающей температуры, но они распространены слабо. Причина тому – низкая точность, так как тепло от внутренностей аппарата и рук пользователя искажает показания.

Датчик давления (барометр) в смартфоне

Барометр в смартфоне измеряет атмосферное давление (в мм ртутного столба, бар или паскалях). Он позволяет корректнее определять местоположение и высоту над уровнем моря, так как при подъеме давление снижается. Также он может использоваться в качестве альтиметра, замеряя высоту над уровнем моря, но точность оставляет желать лучшего, так как атмосферное давление меняется вместе с погодой. Еще меньше востребована функция корректировки прогноза погоды в метеорологических программах и виджетах.

Гигрометр

Гигрометр измеряет влажность воздуха. Его основное предназначение очевидно, но популярностью данный сенсор не пользуется. В теории с его помощью можно корректировать данные прогноза погоды. Зная показания, можно также управлять микроклиматом в помещении, включив увлажнитель или осушитель воздуха. Единственный из известных смартфонов с гигрометром – уже старенький Samsung Galaxy S4.

Пульсометр или датчик сердечного ритма в смартфонах

Пульсометр способен измерять частоту и ритм сердечных сокращений. В процессе занятий спортом он дает возможность наблюдать за работой сердца и корректировать нагрузки для повышения эффективности тренировок. Недостатком пульсометра является потребность в плотном контакте смартфона с частью тела, в которой кровеносные сосуды находятся близко к поверхности (например, пальцами), чтобы уловить малейшие пульсации. Из-за этого популярности в смартфонах он не приобрел, а вот в смарт-часах и фитнес трекерах встречается повсеместно.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png