Дата публикации:

25.06.2009

Как известно, оперативная память вкладывает большую составляющую в производительность компьютера. И понятно, что пользователи стараются увеличить объем оперативной памяти по максимуму.
Если года 2-3 назад на рынке было буквально несколько типов модулей памяти, то сейчас их значительно больше. И разобраться в них стало сложнее.

В этой статье мы рассмотрим различные обозначения в маркировке модулей памяти, чтобы вам проще в них было ориентироваться.

Для начала введем ряд терминов, котоыре нам понадобятся для понимания статьи:

  • планка ("плашка") - модуль памяти, печатная плата с микросхемами памяти на борту, устанавливаемая в слот памяти;
  • односторонняя планка - планка памяти, у которой микросхемы памяти расположены с 1 стороны модуля.
  • двухсторонняя планка - планка памяти, у которой микросхемы памяти расположены с обоих сторон модуля.
  • RAM (Random Access Memory, ОЗУ) - память с произвольным доступом, проще говоря - оперативная память. Это энергозависимая память, содержимое которой теряется при отсутствии питания.
  • SDRAM (Synchronous Dynamic RAM) - синхронная динамическая оперативная память: все современные модули памяти имеют именно такое устройство, то есть требуют постоянной синхронизации и обновления содержимого.

Рассмотрим маркировки

  • 4096Mb (2x2048Mb) DIMM DDR2 PC2-8500 Corsair XMS2 C5 BOX
  • 1024Mb SO-DIMM DDR2 PC6400 OCZ OCZ2M8001G (5-5-5-15) Retail

Объем

Первым обозначением в строке идет объем модулей памяти. В частности, в первом случае это - 4 ГБ, а во втором - 1 ГБ. Правда, 4 ГБ в данном случае реализованы не одной планкой памяти, а двумя. Это так называемый Kit of 2 - набор из двух планок. Обычно такие наборы покупаются для установки планок в двухканальном режиме в параллельные слоты. Тот факт, что они имеют одинаковые параметры, улучшит их совместимость, что благоприятно сказывается на стабильности.

Тип корпуса

DIMM/SO-DIMM - это тип корпуса планки памяти. Все современные модули памяти выпускаются в одном из двух указанных конструктивных исполнений.
DIMM (Dual In-line Memory Module) - модуль, у которого контакты расположены в ряд на обоих сторонах модуля.
Память типа DDR SDRAM выпускается в виде 184-контактных DIMM-модулей, а для памяти типа DDR2 SDRAM выпускаются 240-контактные планки.

В ноутбуках используются модули памяти меньших габаритов, называемые SO-DIMM (Small Outline DIMM).

Тип памяти

Тип памяти - это архитектура, по которой организованы сами микросхемы памяти. Она влияет на все технические характеристики памяти - производительность, частоту, напряжение питание и др.

На данный момент используется 3 типа памяти: DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM. Из них DDR3 - самые производительные, меньше всего потребляющие энергии.

Частоты передачи данных для типов памяти:

  • DDR: 200-400 МГц
  • DDR2: 533-1200 МГц
  • DDR3: 800-2400 МГц

Цифра, указываемая после типа памяти - и есть частота: DDR400, DDR2-800 .

Модули памяти всех типов отличаются напряжением питания и разъемами и не позволяют быть вставленными друг в друга.

Частота передачи данных характеризует потенциал шины памяти по передаче данных за единицу времени: чем больше частота, тем больше данных можно передать.

Однако, есть еще факторы, такие как количество каналов памяти, разрядность шины памяти. Они также влияют на производительность подсистем памяти.

Для комплексной оценки возможностей RAM используется термин пропускная способность памяти. Он учитывает и частоту, на которой передаются данные и разрядность шины и количество каналов памяти.

Пропускная способность (B) = Частота (f) x разрядность шины памяти (c) x кол-во каналов (k)

Например, при использовании памяти DDR400 400 МГц и двухканального контроллера памяти пропускная способность будет:
(400 МГц x 64 бит x 2)/ 8 бит = 6400 Мбайт/с

На 8 мы поделили, чтобы перевести Мбит/с в Мбайт/с (в 1 байте 8 бит).

Стандарт скорости модуля памяти

В обозначении для облегчения понимания скорости модуля указывается и стандарт пропускной способности памяти. Он как раз и показывает, какую пропускную способность имеет модуль.

Все эти стандарты начинаются с букв PC и далее идут цифры, указывающие пропускную способность памяти в Мбайтах в секунду.

Название модуля Частота шины Тип чипа
PC2-3200 200 МГц DDR2-400 3200 МБ/с или 3.2 ГБ/с
PC2-4200 266 МГц DDR2-533 4200 МБ/с или 4.2 ГБ/с
PC2-5300 333 МГц DDR2-667 5300 МБ/с или 5.3 ГБ/с 1
PC2-5400 337 МГц DDR2-675 5400 МБ/с или 5.4 ГБ/с
PC2-5600 350 МГц DDR2-700 5600 МБ/с или 5.6 ГБ/с
PC2-5700 355 МГц DDR2-711 5700 МБ/с или 5.7 ГБ/с
PC2-6000 375 МГц DDR2-750 6000 МБ/с или 6.0 ГБ/с
PC2-6400 400 МГц DDR2-800 6400 МБ/с или 6.4 ГБ/с
PC2-7100 444 МГц DDR2-888 7100 МБ/с или 7.1 ГБ/с
PC2-7200 450 МГц DDR2-900 7200 МБ/с или 7.2 ГБ/с
PC2-8000 500 МГц DDR2-1000 8000 МБ/с или 8.0 ГБ/с
PC2-8500 533 МГц DDR2-1066 8500 МБ/с или 8.5 ГБ/с
PC2-9200 575 МГц DDR2-1150 9200 МБ/с или 9.2 ГБ/с
PC2-9600 600 МГц DDR2-1200 9600 МБ/с или 9.6 ГБ/с
Тип памяти Частота памяти Время цикла Частота шины Передач данных в секунду Название стандарта Пиковая скорость передачи данных
DDR3-800 100 МГц 10.00 нс 400 МГц 800 млн PC3-6400 6400 МБ/с
DDR3-1066 133 МГц 7.50 нс 533 МГц 1066 млн PC3-8500 8533 МБ/с
DDR3-1333 166 МГц 6.00 нс 667 МГц 1333 млн PC3-10600 10667 МБ/с
DDR3-1600 200 МГц 5.00 нс 800 МГц 1600 млн PC3-12800 12800 МБ/с
DDR3-1800 225 МГц 4.44 нс 900 МГц 1800 млн PC3-14400 14400 МБ/с
DDR3-2000 250 МГц 4.00 нс 1000 МГц 2000 млн PC3-16000 16000 МБ/с
DDR3-2133 266 МГц 3.75 нс 1066 МГц 2133 млн PC3-17000 17066 МБ/с
DDR3-2400 300 МГц 3.33 нс 1200 МГц 2400 млн PC3-19200 19200 МБ/с

В таблицах указываются именно пиковые величины, на практике они могут быть недостижимы.

Производитель и его part number

Каждый производитель каждому своему продукту или детали дает его внутреннюю производственную маркировку, называемую P/N (part number) - номер детали.

Для модулей памяти у разных производителей она выглядит примерно так:

  • Kingston KVR800D2N6/1G
  • OCZ OCZ2M8001G
  • Corsair XMS2 CM2X1024-6400C5

На сайте многих производителей памяти можно изучить, как читается их Part Number.
Модули Kingston семейства ValueRAM:

Модули Kingston семейства HyperX (с дополнительным пассивным охлаждением для разгона):

По маркировке OCZ можно понять, что это модуль DDR2 объемом 1 Гбайт, частотой 800 МГц.

По маркировке CM2X1024-6400C5 понятно, что это модуль DDR2 объемом 1024 Мбайт стандарта PC2-6400 и задержками CL=5.

Некоторые производители вместо частоты или стандарта памяти указывают время в нс доступа к чипу памяти. По этому времени можно понять, какая используется частота.
Так поступает Micron: MT47H128M16HG-3 . Цифра в конце обозначает, что время доступа - 3 нс (0.003 мс).

По известной форуме T=1/f частота работы чипа f=1/T : 1/0,003 = 333 МГц.
Частота передачи данных в 2 раза выше - 667 МГц.
Соответственно, данный модуль DDR2-667.

Тайминги

Тайминги - это задержки при обращении к микросхемам памяти. Естественно, чем они меньше - тем быстрее работает модуль.

Дело в том, что микросхемы памяти на модуле имеют матричную структуру - представлены в виде ячеек матрицы с номером строки и номером столбца.
При обращении к ячейке памяти считывается вся строка, в которой находится нужная ячейка.

Сначала происходит выбор нужной строки, затем нужного столбца. На пересечении строки и номера столбца и находится нужная ячейка. С учетом огромных объемом современной RAM такие матрицы памяти не целиковые - для более быстрого доступа к ячейкам памяти они разбиты на страницы и банки.
Сначала происходит обращение к банку памяти, активизация страницы в нем, затем уже происходит работа в пределах текущей страницы: выбор строки и столбца.
Все эти действия происходит с определенно задержкой друг относительно друг друга.

Основные тайминги RAM - это задержка между подачей номера строки и номера столбца, называемая временем полного доступа (RAS to CAS delay, RCD ), задержка между подачей номера столбца и получением содержимого ячейки, называемая временем рабочего цикла (CAS latency, CL ), задержка между чтением последней ячейки и подачей номера новой строки (RAS precharge, RP ). Тайминги измеряются в наносекундах (нс).

Эти тайминги так и идут друг за другом в порядке выполнения операций и также обозначаются схематично 5-5-5-15 . В данном случае все три тайминга по 5 нс, а общий рабочий цикл - 15 нс с момента активизации строки.

Главным таймингом считается CAS latency , который часто обозначается сокращенно CL=5 . Именно он в наибольшей степени "тормозит" память.

Основываясь на этой информации, вы сможете грамотно выбрать подходящий модуль памяти.

Мое почтенье дорогие посетители сайта. В прошлой статье я писал о том, . Теперь, узнав что это такое и для чего и как оно служит, многие из Вас наверно подумываете о том, чтобы приобрести для своего компьютера более мощную и производительную оперативку. Ведь увеличение производительности компьютера с помощью дополнительного объёма памяти ОЗУ является самым простым и дешевым (в отличии например от видеокарты) методом модернизации вашего любимца.

И… Вот вы стоите у витрины с упаковками оперативок. Их много и все они разные. Встают вопросы: А какую оперативную память выбрать? Как правильно выбрать ОЗУ и не прогадать? А вдруг я куплю оперативку, а она потом не будет работать? Это вполне резонные вопросы. В этой статье я попробую ответить на все эти вопросы. Как вы уже поняли, эта статья займет свое достойное место в цикле статей, в которых я писал о том, как правильно выбирать отдельные компоненты компьютера т.е. железо. Если вы не забыли, туда входили статьи:



Этот цикл будет и дальше продолжен, и в конце вы сможете уже собрать для себя совершенный во всех смыслах супер компьютер 🙂 (если конечно финансы позволят:))
А пока учимся правильно выбирать для компьютера оперативную память .
Поехали!

Оперативная память и её основные характеристики.

При выборе оперативной памяти для своего компьютера нужно обязательно отталкиваться от вашей материнской платы и процессора потому что модули оперативки устанавливаются на материнку и она же поддерживает определенные типы оперативной памяти. Таким образом получается взаимосвязь между материнской платой, процессором и оперативной памятью.

Узнать о том, какую оперативную память поддерживает ваша материнка и процессор можно на сайте производителя, где необходимо найти модель своей материнской платы, а также узнать какие процессоры и оперативную память для них она поддерживает. Если этого не сделать, то получится, что вы купили супер современную оперативку, а она не совместима с вашей материнской платой и будет пылиться где нибудь у вас в шкафу. Теперь давайте перейдем непосредственно к основным техническим характеристикам ОЗУ, которые будут служить своеобразными критериями при выборе оперативной памяти. К ним относятся:

Вот я перечислил основные характеристики ОЗУ, на которые стоит обращать внимание в первую очередь при её покупке. Теперь раскроем каждый из ни по очереди.

Тип оперативной памяти.

На сегодняшний день в мире наиболее предпочтительным типом памяти являются модули памяти DDR (double data rate). Они различаются по времени выпуска и конечно же техническими параметрами.

  • DDR или DDR SDRAM (в переводе с англ. Double Data Rate Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных). Модули данного типа имеют на планке 184 контакта, питаются напряжением в 2,5 В и имеют тактовую частоту работы до 400 мегагерц. Данный тип оперативной памяти уже морально устарел и используется только в стареньких материнских платах.
  • DDR2 — широко распространенный на данное время тип памяти. Имеет на печатной плате 240 контактов (по 120 на каждой стороне). Потребление в отличие от DDR1 снижено до 1,8 В. Тактовая частота колеблется от 400 МГц до 800 МГц.
  • DDR3 — лидер по производительности на момент написания данной статьи. Распространен не менее чем DDR2 и потребляет напряжение на 30-40% меньше в отличии от своего предшественника (1,5 В). Имеет тактовую частоту до 1800 МГц.
  • DDR4 — новый, супер современный тип оперативной памяти, опережающий своих собратьев как по производительности (тактовой частоте) так и потреблением напряжения (а значит отличающийся меньшим тепловыделением). Анонсируется поддержка частот от 2133 до 4266 Мгц. На данный момент в массовое производство данные модули ещё не поступили (обещают выпустить в массовое производство в середине 2012 года). Официально, модули четвертого поколения, работающие в режиме DDR4-2133 при напряжении 1,2 В были представлены на выставке CES, компанией Samsung 04 января 2011 года.

Объём оперативной памяти.

Про объём памяти много писать не буду. Скажу лишь, что именно в этом случае размер имеет значение 🙂
Все несколько лет назад оперативная память объёмом в 256-512 МБ удовлетворяла все нужды даже крутых геймерских компьютеров. В настоящее же время для нормального функционирования отдельно лишь операционной системы windows 7 требуется 1 Гб памяти, не говоря уже о приложениях и играх. Лишней оперативка никогда не будет, но скажу Вам по секрету, что 32-х разрядная windows использует лишь 3,25 Гб ОЗУ, если даже вы установите все 8 Гб ОЗУ. Подробнее об этом вы можете прочитать .

Габариты планок или так называемый Форм — фактор.

Form — factor — это стандартные размеры модулей оперативки, тип конструкции самих планок ОЗУ.
DIMM (Dual InLine Memory Module — двухсторонний тип модулей с контактами на обоих сторонах) — в основном предназначены для настольных стационарных компьютеров, а SO-DIMM используются в ноутбуках.

Тактовая частота.

Это довольно таки важный технический параметр оперативной памяти. Но тактовая частота есть и у материнской платы и важно знать рабочую частоту шины этой платы, так как если вы купили например модуль ОЗУ DDR3-1800 , а слот (разъём) материнской платы поддерживает максимальную тактовую частоту DDR3-1600 , то и модуль оперативной памяти в результате будет работать на тактовой частоте в 1600 МГц . При этом возможны всяческие сбои, ошибки в работе системы и .

Примечание: Частота шины памяти и частота процессора — совершенно разные понятия.

Из приведенных таблиц можно понять, что частота шины, умноженная на 2, дает эффективную частоту памяти (указанную в графе «чип»), т.е. выдает нам скорость передачи данных. Об этом же нам говорит и название DDR (Double Data Rate) — что означает удвоенная скорость передачи данных.
Приведу для наглядности пример расшифровки в названии модуля оперативной памяти — Kingston/PC2-9600/DDR3(DIMM)/2Gb/1200MHz , где:
— Kingston — производитель;
— PC2-9600 — название модуля и его пропускная способность;
— DDR3(DIMM) — тип памяти (форм фактор в котором выполнен модуль);
— 2Gb — объем модуля;
— 1200MHz — эффективная частота, 1200 МГц.

Пропускная способность.

Пропускная способность — характеристика памяти, от которой зависит производительность системы. Выражается она как произведение частоты системной шины на объём данных передаваемых за один такт. Пропускная способность (пиковый показатель скорости передачи данных) – это комплексный показатель возможности RAM , в нем учитывается частота передачи данных , разрядность шины и количество каналов памяти. Частота указывает потенциал шины памяти за такт – при большей частоте можно передать больше данных.
Пиковый показатель вычисляется по формуле: B = f * c , где:
В — пропускная способность, f — частота передачи, с — разрядность шины. Если Вы используете два канала для передачи данных, все полученное умножаем на 2. Чтобы получить цифру в байтах/c, Вам необходимо полученный результат поделить на 8 (т.к. в 1 байте 8 бит).
Для лучшей производительности пропускная способность шины оперативной памяти и пропускная способность шины процессора должны совпадать. К примеру, для процессора Intel core 2 duo E6850 с системной шиной 1333 MHz и пропускной способностью 10600 Mb/s , можно установить два модуля с пропускной способностью 5300 Mb/s каждый (PC2-5300 ), в сумме они будут иметь пропускную способность системной шины (FSB ) равную 10600 Mb/s .
Частоту шины и пропускную способность обозначают следующим образом: «DDR2-XXXX » и «PC2-YYYY «. Здесь «XXXX » обозначает эффективную частоту памяти, а «YYYY » пиковую пропускную способность.

Тайминги (латентность).

Тайминги (или латентность) — это временные задержки сигнала, которые, в технической характеристике ОЗУ записываются в виде «2-2-2 » или «3-3-3 » и т.д. Каждая цифра здесь выражает параметр. По порядку это всегда «CAS Latency » (время рабочего цикла), «RAS to CAS Delay » (время полного доступа) и «RAS Precharge Time » (время предварительного заряда).

Примечание

Чтобы вы могли лучше усвоить понятие тайминги, представьте себе книгу, она будет у нас оперативной памятью, к которой мы обращаемся. Информация (данные) в книге (оперативной памяти) распределены по главам, а главы состоят из страниц, которые в свою очередь содержат таблицы с ячейками (как например в таблицах Excel). Каждая ячейка с данными на странице имеет свои координаты по вертикали (столбцы) и горизонтали (строки). Для выбора строки используется сигнал RAS (Raw Address Strobe) , а для считывания слова (данных) из выбранной строки (т.е. для выбора столбца) — сигнал CAS (Column Address Strobe) . Полный цикл считывания начинается с открытия «страницы» и заканчивается её закрытием и перезарядкой, т.к. иначе ячейки разрядятся и данные пропадут.Вот так выглядит алгоритм считывания данных из памяти:

  1. выбранная «страница» активируется подачей сигнала RAS ;
  2. данные из выбранной строки на странице передаются в усилитель, причем на передачу данных необходима задержка (она называется RAS-to-CAS );
  3. подается сигнал CAS для выбора (столбца) слова из этой строки;
  4. данные передаются на шину (откуда идут в контроллер памяти), при этом также происходит задержка (CAS Latency );
  5. следующее слово идет уже без задержки, так как оно содержится в подготовленной строке;
  6. после завершения обращения к строке происходит закрытие страницы, данные возвращаются в ячейки и страница перезаряжается (задержка называется RAS Precharge ).

Каждая цифра в обозначении указывает, на какое количество тактов шины будет задержан сигнал. Тайминги измеряются в нано-секундах. Цифры могут иметь значения от 2 до 9 . Но иногда к трем этим параметрам добавляется и четвертый (например: 2-3-3-8 ), называющийся «DRAM Cycle Time Tras/Trc ” (характеризует быстродействие всей микросхемы памяти в целом).
Случается, что иногда хитрый производитель указывает в характеристике оперативки лишь одно значение, например «CL2 » (CAS Latency ), первый тайминг равный двум тактам. Но первый параметр не обязательно должен быть равен всем таймингам, а может быть и меньше других, так что имейте это в виду и не попадайтесь на маркетинговый ход производителя.
Пример для наглядности влияния таймингов на производительность: система с памятью на частоте 100 МГц с таймингами 2-2-2 обладает примерно такой же производительностью, как та же система на частоте 112 МГц , но с задержками 3-3-3 . Другими словами, в зависимости от задержек, разница в производительности может достигать 10 % .
Итак, при выборе лучше покупать память с наименьшими таймингами, а если Вы хотите добавить модуль к уже установленному, то тайминги у покупаемой памяти должны совпадать с таймингами установленной памяти.

Режимы работы памяти.

Оперативная память может работать в нескольких режимах, если конечно такие режимы поддерживаются материнской платой. Это одноканальный , двухканальный , трехканальный и даже четырехканальный режимы. Поэтому при выборе оперативной памяти стоит обратить внимание и на этот параметр модулей.
Теоретически скорость работы подсистемы памяти при двухканальном режиме увеличивается в 2 раза, трехканальном – в 3 раза соответственно и т.д., но на практике при двухканальном режиме прирост производительности в отличии от одноканального составляет 10-70%.
Рассмотрим подробнее типы режимов:

  • Single chanell mode (одноканальный или асимметричный) – этот режим включается, когда в системе установлен только один модуль памяти или все модули отличаются друг от друга по объему памяти, частоте работы или производителю. Здесь неважно, в какие разъемы и какую память устанавливать. Вся память будет работать со скоростью самой медленной из установленной памяти.
  • Dual Mode (двухканальный или симметричный) – в каждом канале устанавливается одинаковый объем оперативной памяти (и теоретически происходит удвоение максимальной скорости передачи данных). В двухканальном режиме модули памяти работают попарно 1-ый с 3-им и 2-ой с 4-ым.
  • Triple Mode (трехканальный) – в каждом из трех каналов устанавливается одинаковый объем оперативной памяти. Модули подбираются по скорости и объему. Для включения этого режима модули должны быть установлены в 1, 3 и 5/или 2, 4 и 6 слоты. На практике, кстати говоря, такой режим не всегда оказывается производительнее двухканального, а иногда даже и проигрывает ему в скорости передачи данных.
  • Flex Mode (гибкий) – позволяет увеличить производительность оперативной памяти при установке двух модулей различного объема, но одинаковых по частоте работы. Как и в двухканальном режиме платы памяти устанавливаются в одноименные разъемы разных каналов.

Обычно наиболее распространенным вариантом является двухканальный режим памяти.
Для работы в многоканальных режимах существуют специальные наборы модулей памяти — так называемая Kit-память (Kit-набор) — в этот набор входит два (три) модуля, одного производителя, с одинаковой частотой, таймингами и типом памяти.
Внешний вид KIT-наборов:
для двухканального режима

для трехканального режима

Но самое главное, что такие модули тщательно подобраны и протестированы, самим производителем, для работы парами (тройками) в двух-(трёх-) канальных режимах и не предполагают никаких сюрпризов в работе и настройке.

Производитель модулей.

Сейчас на рынке ОЗУ хорошо себя зарекомендовали такие производители, как: Hynix , amsung , Corsair , Kingmax , Transcend , Kingston , OCZ
У каждой фирмы к каждому продукту имеется свой маркировочный номер , по которому, если его правильно расшифровать, можно узнать для себя много полезной информации о продукте. Давайте для примера попробуем расшифровать маркировку модуля Kingston семейства ValueRAM (смотрите изображение):

Расшифровка:

  • KVR – Kingston ValueRAM т.е. производитель
  • 1066/1333 – рабочая/эффективная частота (Mhz)
  • D3 — тип памяти (DDR3 )
  • D (Dual) – rank/ранг . Двухранговый модуль – это два логических модуля, распаянных на одном физическом и пользующихся поочерёдно одним и тем же физическим каналом (нужен для достижения максимального объёма оперативной памяти при ограниченном количестве слотов)
  • 4 – 4 чипа памяти DRAM
  • R – Registered , указывает на стабильное функционирование без сбоев и ошибок в течение как можно большего непрерывного промежутка времени
  • 7 – задержка сигнала (CAS=7 )
  • S – термодатчик на модуле
  • K2 – набор (кит) из двух модулей
  • 4G – суммарный объем кита (обеих планок) равен 4 GB.

Приведу еще один пример маркировки CM2X1024-6400C5 :
Из маркировки видно, что это модуль DDR2 объемом 1024 Мбайт стандарта PC2-6400 и задержками CL=5 .
Марки OCZ , Kingston и Corsair рекомендуют для оверклокинга, т.е. имеют потенциал для разгона. Они будут с небольшими таймингами и запасом тактовой частоты, плюс ко всему они снабжены радиаторами, а некоторые даже кулерами для отвода тепла, т.к. при разгоне количество тепла значительно увеличивается. Цена на них естественно будет гораздо выше.
Советую не забывать про подделки (их на прилавках очень много) и покупать модули оперативной памяти только в серьезных магазинах, которые дадут Вам гарантию.

Напоследок:
На этом все. С помощью данной статьи, думаю, вы уже не ошибетесь при выборе оперативной памяти для своего компьютера. Теперь вы сможете правильно выбрать оперативку для системы и повысить её производительность без каких либо проблем. Ну, а тем кто купит оперативную память (или уже купил), я посвящу следующую статью, в которой я подробно опишу как правильно устанавливать оперативную память в систему. Не пропустите…

Вот и вышли процессоры Intel Haswell-E. сайт уже успела протестировать топовый 8-ядерник Core i7-5960X , а также материнскую плату ASUS X99-DELUXE . И, пожалуй, главной «фишкой» новой платформы стала поддержка стандарта оперативной памяти DDR4.

Начало новой эпохи, эпохи DDR4

О стандарте SDRAM и модулях памяти

Первые модули SDRAM появились еще в 1993 году. Их выпустила компания Samsung. А уже к 2000 году память SDRAM за счет производственных мощностей корейского гиганта полностью вытеснила с рынка стандарт DRAM.

Аббревиатура SDRAM расшифровывается как Synchronous Dynamic Random Access Memory. Дословно это можно перевести как «синхронная динамическая память с произвольным доступом». Поясним значение каждой характеристики. Динамической память является потому, что в силу малой емкости конденсаторов она постоянно требует обновления. К слову, кроме динамической, также существует и статическая память, которая не требует постоянного обновления данных (SRAM). SRAM, например, лежит в основе кэш-памяти. Помимо динамической, память также является синхронной, в отличие от асинхронной DRAM. Синхронность заключается в том, что память выполняет каждую операцию известное число времени (или тактов). Например, при запросе каких-либо данных контроллер памяти точно знает, сколько времени они будут до него добираться. Свойство синхронности позволяет управлять потоком данных и выстраивать их в очередь. Ну и пару слов о «памяти с произвольным доступом» (RAM). Это означает, что единовременно можно получить доступ к любой ячейке по ее адресу на чтение или запись, причем всегда за одно и то же время вне зависимости от расположения.

Модуль памяти SDRAM

Если говорить непосредственно о конструкции памяти, то ее ячейками являются конденсаторы. Если заряд в конденсаторе есть, то процессор расценивает его как логическую единицу. Если заряда нет - как логический ноль. Такие ячейки памяти имеют плоскую структуру, а адрес каждой из них определяется как номер строки и столбца таблицы.

В каждом чипе находится несколько независимых массивов памяти, которые представляют собой таблицы. Их называют банками. В единицу времени можно работать только с одной ячейкой в банке, однако существует возможность работы сразу с несколькими банками. Записываемая информация необязательно должна храниться в одном массиве. Зачастую она разбивается на несколько частей и записывается в разные банки, причем процессор продолжает считать эти данные единым целым. Такой способ записи называется interleaving. В теории, чем больше в памяти таких банков, тем лучше. На практике модули с плотностью до 64 Мбит имеют два банка. С плотностью от 64 Мбит до 1 Гбит - четыре, а с плотностью 1 Гбит и выше - уже восемь.

Что такое банк памяти

И несколько слов о строении модуля памяти. Сам по себе модуль памяти представляет собой печатную плату с распаянными на ней чипами. Как правило, в продаже можно встретить устройства, выполненные в форм-факторах DIMM (Dual In-line Memory Module) или SO-DIMM (Small Outline Dual In-line Memory Module). Первый предназначается для использования в полноценных настольных компьютерах, а второй - для установки в ноутбуки. Несмотря на один и тот же форм-фактор, модули памяти разных поколений отличаются количеством контактов. Например, решение SDRAM имеет 144 пина для подключения к материнской плате, DDR - 184, DDR2 - 214 пинов, DDR3 - 240, а DDR4 - уже 288 штук. Конечно, речь в данном случае идет о DIMM-модулях. Устройства, выполненные в форм-факторе SO-DIMM, само собой имеют меньшее число контактов в силу своих меньших размеров. Например, модуль памяти DDR4 SO-DIMM подключается к «материнке» за счет 256 пинов.

Модуль DDR (внизу) имеет больше пинов, чем SDRAM (вверху)

Вполне очевидно и то, что объем каждого модуля памяти высчитывается как сумма емкостей каждого распаянного чипа. Чипы памяти, конечно, могут отличаться своей плотностью (или, проще говоря, объемом). К примеру, прошедшей весной компания Samsung наладила серийное производство чипов с плотностью 4 Гбит. Причем в обозримом будущем планируется выпуск памяти с плотностью 8 Гбит. Также модули памяти имеют свою шину. Минимальная ширина шины составляет 64 бит. Это означает, что за такт передается 8 байт информации. При этом нужно отметить, что также существуют 72-битные модули памяти, в которых «лишние» 8 бит отведены для технологии коррекции ошибок ECC (Error Checking & Correction). Кстати, ширина шины модуля памяти также является суммой ширин шин каждого отдельно взятого чипа памяти. То есть, если шина модуля памяти является 64-битной и на планке распаяно восемь чипов, то ширина шины памяти каждого чипа равна 64/8=8 бит.

Чтобы рассчитать теоретическую пропускную способность модуля памяти, можно воспользоваться следующей формулой: A*64/8=ПС, где «А» - это скорость передачи данных, а «ПС» - искомая пропускная способность. В качестве примера можно взять модуль памяти типа DDR3 с частотой 2400 МГц. В таком случае пропускная способность будет равняться 2400*64/8=19200 Мбайт/с. Именно это число имеется в виду в маркировке модуля PC3-19200.

Как же происходит непосредственно чтение информации из памяти? Сначала подается адресный сигнал в соответствующую строку (Row), а уже затем считывается информация из нужного столбца (Column). Информация считывается в так называемый усилитель (Sense Amplifiers) - механизм подзарядки конденсаторов. В большинстве случаев контроллер памяти считывает сразу целый пакет данных (Burst) с каждого бита шины. Соответственно, при записи каждые 64 бита (8 байт) делятся на несколько частей. К слову, существует такое понятие как длина пакета данных (Burst Length). Если эта длина равна 8, то за один раз передается сразу 8*64=512 бит.

Модули и чипы памяти также имеют такую характеристику, как геометрия, или организация (Memory Organization). Геометрия модуля показывает его ширину и глубину. Например, чип с плотностью 512 Мбит и разрядностью (шириной) 4 имеет глубину чипа 512/4=128М. В свою очередь, 128М=32М*4 банка. 32М - это матрица, содержащая 16000 строк и 2000 столбцов. Она может хранить 32 Мбит данных. Что касается самого модуля памяти, то почти всегда его разрядность составляет 64 бита. Глубина же легко высчитывается по следующей формуле: объем модуля умножается на 8 для перевода из байтов в биты, а затем делится на разрядность.

На маркировке без труда можно найти значения таймингов

Необходимо сказать несколько слов и о такой характеристике модулей памяти, как тайминги (задержки). В самом начале статьи мы говорили о том, что стандарт SDRAM предусматривает такой момент, что контроллер памяти всегда знает, сколько времени выполняется та или иная операция. Тайминги как раз и указывают время, требующееся на исполнение определенной команды. Это время измеряется в тактах шины памяти. Чем меньше это время, тем лучше. Самыми важными являются следующие задержки:

  • TRCD (RAS to CAS Delay) - время, которое необходимо для активации строки банка. Минимальное время между командой активации и командой чтения/записи;
  • CL (CAS Latency) - время между подачей команды чтения и началом передачи данных;
  • TRAS (Active to Precharge) - время активности строки. Минимальное время между активацией строки и командой закрытия строки;
  • TRP (Row Precharge) - время, необходимое для закрытия строки;
  • TRC (Row Cycle time, Activate to Activate/Refresh time) - время между активацией строк одного и того же банка;
  • TRPD (Active bank A to Active bank B) - время между командами активации для разных банков;
  • TWR (Write Recovery time) - время между окончанием записи и подачей команды закрытия строки банка;
  • TWTR (Internal Write to Read Command Delay) - время между окончанием записи и командой чтения.

Конечно, это далеко не все существующие в модулях памяти задержки. Можно перечислить еще добрый десяток всевозможных таймингов, но лишь указанные выше параметры существенно влияют на производительность памяти. Кстати, в маркировке модулей памяти и вовсе указываются только четыре задержки. Например, при параметрах 11-13-13-31 тайминг CL равен 11, TRCD и TRP - 13, а TRAS - 31 такту.

Со временем потенциал SDRAM достигла своего потолка, и производители столкнулись с проблемой повышения быстродействия оперативной памяти. Так на свет появился стандарт DDR.1

Пришествие DDR

Разработка стандарта DDR (Double Data Rate) началась еще в 1996 году и закончилась официальной презентацией в июне 2000 года. С приходом DDR уходящую в прошлое память SDRAM стали называть попросту SDR. Чем же стандарт DDR отличается от SDR?

После того как все ресурсы SDR были исчерпаны, у производителей памяти было несколько путей решения проблемы повышения производительности. Можно было бы просто наращивать число чипов памяти, тем самым увеличивая разрядность всего модуля. Однако это отрицательно сказалось бы на стоимости таких решений - уж очень дорого обходилась эта затея. Поэтому в ассоциации производителей JEDEC пошли иным путем. Было решено вдвое увеличить шину внутри чипа, а передачу данных осуществлять также на вдвое повышенной частоте. Кроме этого, в DDR предусматривалась передача информации по обоим фронтам тактового сигнала, то есть два раза за такт. Отсюда и берет свое начало аббревиатура DDR - Double Data Rate.

Модуль памяти DDR производства Kingston

С приходом стандарта DDR появились такие понятия, как реальная и эффективная частота памяти. К примеру, многие модули памяти DDR работали на скорости 200 МГц. Эта частота называется реальной. Но из-за того, что передача данных осуществлялась по обоим фронтам тактового сигнала, производители в маркетинговых целях умножали эту цифру на 2 и получали якобы эффективную частоту 400 МГц, которую и указывали в маркировке (в данном случае - DDR-400). При этом в спецификациях JEDEC указано, что использовать термин «мегагерц» для характеристики уровня производительности памяти и вовсе некорректно! Вместо него необходимо использовать «миллионы передач в секунду через один выход данных». Однако маркетинг - дело серьезное, указанные в стандарте JEDEC рекомендации мало кому были интересны. Поэтому новый термин так и не прижился.

Также в стандарте DDR впервые появился двухканальный режим работы памяти. Использовать его можно было при наличии четного числа модулей памяти в системе. Его суть заключается в создании виртуальной 128-битной шины за счет чередования модулей. В таком случае происходила выборка сразу 256 бит. На бумаге двухканальный режим может поднять производительность подсистемы памяти в два раза, однако на практике прирост скорости оказывается минимален и далеко не всегда заметен. Он зависит не только от модели оперативной памяти, но и от таймингов, чипсета, контроллера памяти и частоты.

Четыре модуля памяти работают в двухканальном режиме

Еще одним нововведением в DDR стало наличие сигнала QDS. Он располагается на печатной плате вместе с линиями данных. QDS был полезен при использовании двух и более модулей памяти. В таком случае данные приходят к контроллеру памяти с небольшой разницей во времени из-за разного расстояния до них. Это создает проблемы при выборе синхросигнала для считывания данных, которые успешно решает как раз QDS.

Как уже говорилось выше, модули памяти DDR выполнялись в форм-факторах DIMM и SO-DIMM. В случае DIMM количество пинов составляло 184 штуки. Для того чтобы модули DDR и SDRAM были физически несовместимы, у решений DDR ключ (разрез в области контактной площадки) располагался в ином месте. Кроме этого, модули памяти DDR работали с напряжением 2,5 В, тогда как устройства SDRAM использовали напряжение 3,3 В. Соответственно, DDR обладала меньшим энергопотреблением и тепловыделением в сравнении с предшественником. Максимальная частота модулей DDR составляла 350 МГц (DDR-700), хотя спецификациями JEDEC предусматривалась лишь частота 200 МГц (DDR-400).

Память DDR2 и DDR3

Первые модули типа DDR2 появились в продаже во втором квартале 2003 года. В сравнении с DDR, оперативная память второго поколения не получила существенных изменений. DDR2 использовала всю ту же архитектуру 2 n -prefetch. Если раньше внутренняя шина данных была вдвое больше, чем внешняя, то теперь она стала шире в четыре раза. При этом возросшую производительность чипа стали передавать по внешней шине с удвоенной частотой. Именно частотой, но не удвоенной скоростью передачи. В итоге мы получили, что если у DDR-400 чип работал на реальной частоте 200 МГц, то в случае DDR2-400 он функционировал со скоростью 100 МГц, но с вдвое большей внутренней шиной.

Также DDR2-модули получили большее количество контактов для присоединения к материнской плате, а ключ был перенесен в другое место для физической несовместимости с планками SDRAM и DDR. Вновь было снижено рабочее напряжение. Если модули DDR работали при напряжении 2,5 В, то решения DDR2 функционировали при разности потенциалов 1,8 В.

По большому счету, на этом все отличия DDR2 от DDR заканчиваются. Первое время модули DDR2 в отрицательную сторону отличались высокими задержками, из-за чего проигрывали в производительности планкам DDR с одинаковой частотой. Однако вскоре ситуация вернулась на круги своя: производители снижали задержки и выпускали более быстрые наборы оперативной памяти. Максимальная частота DDR2 достигала отметки эффективных 1300 МГц.

Различное положение ключа у модулей DDR, DDR2 и DDR3

При переходе от стандарта DDR2 к DDR3 использовался тот же самый подход, что и при переходе от DDR к DDR2. Само собой, сохранилась передача данных по обоим концам тактового сигнала, а теоретическая пропускная способность выросла в два раза. Модули DDR3 сохранили архитектуру 2 n -prefetch и получили 8-битную предвыборку (у DDR2 она была 4-битной). При этом внутренняя шина стала в восемь раз больше, чем внешняя. Из-за этого в очередной раз при смене поколений памяти увеличились ее тайминги. Номинальное рабочее напряжение для DDR3 было снижено до 1,5 В, что позволило сделать модули более энергоэффективными. Заметим, что, кроме DDR3, существует память типа DDR3L (буква L означает Low), которая работает с пониженным до 1,35 В напряжением. Также стоит отметить, что модули DDR3 оказались ни физически, ни электрически несовместимы с любым из предыдущих поколений памяти.

Конечно, чипы DDR3 получили поддержку некоторых новых технологий: например, автоматическую калибровку сигнала и динамическое терминирование сигналов. Однако в целом все изменения носят преимущественно количественный характер.

DDR4 - очередная эволюция

Наконец, мы добрались до совершенно новой памяти типа DDR4. Ассоциация JEDEC начала разработку стандарта еще в 2005 году, однако лишь весной этого года первые устройства появились в продаже. Как говорится в пресс-релизе JEDEC, при разработке инженеры пытались достичь наибольшей производительности и надежности, увеличив при этом энергоэффективность новых модулей. Что ж, такое мы слышим каждый раз. Давайте посмотрим, какие конкретно изменения получила память DDR4 в сравнении с DDR3.

На этой картинке можно проследить эволюцию технологии DDR: как менялись показатели напряжения, частоты и емкости

Один из первых прототипов DDR4. Как ни странно, это ноутбучные модули

В качестве примера рассмотрим 8-гигабайтный DDR4-чип с шиной данных шириной 4 бита. Такой девайс содержит 4 группы банков по 4 банка в каждой. Внутри каждого банка находятся 131 072 (2 17) строки емкостью 512 байт каждая. Для сравнения можно привести характеристики аналогичного DDR3-решения. Такой чип содержит 8 независимых банков. В каждом из банков находятся 65 536 (2 16) строк, а в каждой строке - 2048 байт. Как видите, длина каждой строки чипа DDR4 в четыре раза меньше длины строки DDR3. Это означает, что DDR4 осуществляет «просмотр» банков быстрее, нежели DDR3. При этом переключение между самими банками также происходит гораздо быстрее. Тут же отметим, что для каждой группы банков предусмотрен независимый выбор операций (активация, чтение, запись или регенерация), что позволяет повысить эффективность и пропускную способность памяти.

Основные преимущества DDR4: низкое энергопотребление, высокая частота, большой объем модулей памяти

Что за стандарт такой - DDR3? Память Synchronous Dynamic Random Access Memory, третье поколение стандарта Double Data Rate - попросту DDR3 SDRAM , представляет собой новое поколение памяти DDR, идущей на смену нынешнего поколения DDR2 SDRAM. Архитектура современной динамической памяти DRAM перешагнула этапы одиночной и двойной скорости передачи данных, и теперь, на этапе DDR3, мы можем говорить о поконтактной пиковой производительности до 1,6 Гбит/с на сигнальный контакт для DDR3 (100 Мбит/с на контакт у SDRAM). При сохранении основного строения архитектуры, ключевым изменениям подверглись цепи предварительной выборки данных (prefetch) и дизайн шин I/O. Говоря упрощённо, в случае DDR3 каждая операция чтения или записи означает доступ к восьми группам данных (словам) DDR3 DRAM, которые, в свою очередь, с помощью двух различных опорных генераторов мультиплексируются по контактам I/O с частотой, в четыре раза превышающей тактовую частоту.

Среди основных преимуществ нового стандарта, прежде всего, стоит отметить меньшее энергопотребление, примерно на 40% чем у ходовых образцов модулей DDR2. Основной причиной экономии энергопотребления называют использование нового поколения чипов памяти DDR3, выпуск которых налажен у большинства производителей с соблюдением норм 90 нм техпроцесса. Это позволяет снизить рабочие напряжения чипов – до 1,5 В у DDR3, что ниже 1,8 В у DDR2 или 2,5 В у DDR; плюс, дополнительно снизить рабочие токи за счёт использования транзисторов с двумя затворами для снижения токов утечки. На практике это приведёт к тому, что, к примеру, у модулей DDR3-1066, значительно превышающих по производительности модули DDR2-800 и на 15% потребляющих меньше в спящем режиме, энергопотребление будет сравнимо с модулями DDR2-667. Имеет ли новая оперативная память DDR3 какое-то отношение к графической памяти GDDR3 в видеокартах или приставках Xbox 360? Нет, не имеет. Под схожими названиями скрывается разная архитектура, с совершенно несхожими схемами буферизации и т.д. Так что отныне лучше не смешивать термины "DDR3" и "GDDR3". Каковы основные функциональные особенности памяти DDR3? Основные особенности архитектуры чипов DDR3 SDRAM таковы:

  • Появление контакта асинхронного сброса (RESET)
  • Поддержка компенсации System Level Flight Time
  • "Зеркальная" цоколёвка чипов с удобным расположением контактов для сборки модуля DIMM (On-DIMM Mirror friendly DRAM ballout)
  • Появление скоростного буфера CWL (CAS Write Latency)
  • Внутрикристальный модуль калибровки I/O
  • Калибровка READ и WRITE
  • Типичные (ожидаемые) маркировки чипов в зависимости от скорости: DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600

Основные особенности модулей DDR3:

  • "Сетевая" Fly-by топология командной/адресной/управляющей шины с внутримодульной (On-DIMM) терминацией
  • Прецизионные внешние резисторы (ZQ resistors) в цепях калибровки
Будет ли DDR3 быстрее чем DDR2, в чём плюсы и минусы этих типов памяти? Производительность модулей памяти DDR3 в перспективе должна значительно превысить возможности нынешнего поколения памяти DDR2 – хотя бы потому, что теоретически эффективные частоты DDR3 будут располагаться в диапазоне 800 МГц – 1600 МГц (при тактовых частотах 400 МГц – 800 МГц). В то время как у DDR2 эффективные рабочие частоты составляют 400 МГц - 1066 МГц (тактовые частоты 200 МГц - 533 МГц), а у DDR – и вовсе 200 МГц - 600 МГц (100 МГц - 300 МГц). Помимо этого, память DDR3 обладает 8-битным буфером предварительной выборки, в то время как у нынешней памяти DDR2 он 4-битный, а у DDR и вовсе был 2-битный. Буфер предварительной выборки (prefetch buffer), надо отметить, достаточно важный элемент современных модулей памяти, поскольку он отвечает за кэширование данных перед тем, как они будут востребованы. Таким образом, предварительная 8-битная выборка DDR3 позволяет говорить о работе I/O шин модуля на тактовой частоте, в 8 превышающей тактовую частоту. Второй причиной роста производительности DDR3 можно смело назвать новую схемотехнику динамической внутрикристальной терминации (Dynamic On-Die Termination), калибровка которой производится в процессе инициализации для достижения оптимального взаимодействия памяти и системы. Наконец, в отличие от DDR2, где терминация применялась только частично, память DDR3 обладает полной терминацией, включая адреса и команды. Преимуществами DDR3 по сравнению с DDR2 можно назвать более высокие тактовые частоты – до 1600 МГц, рост производительности при меньшем энергопотреблении (соответственно, более продолжительную работу ноутбуков от батарей), а также улучшенный термодизайн. Минусом DDR3 против DDR2 можно назвать более высокую латентность. Кто разрабатывает, продвигает и намерен поддерживать память стандарта DDR3? В разработке и утверждении стандарта DDR3 принимали участие все ведущие компании IT-индустрии, входящие в стандартообразующий комитет по DDR3 при комиссии JEDEC (Joint Electronic Device Engineering Council). Сейчас в работе секции по DDR3 принимают участие более 270 компаний, среди которых можно назвать Intel, AMD, Samsung, Qimonda, Micron, Corsair, OCZ и другие. Почему эффективный "срок рыночной жизни" памяти DDR2 оказался столь коротким – по сравнению с DDR, и не ждёт ли такая же скоротечная судьба память DDR3? На самом деле надо помнить, что на заре развития технологии DDR, как говорится, "единства в товарищах" среди производителей процессоров и чипсетов не было. Ветераны IT-рынка запросто припомнят бушевавшие в то время "войны стандартов", львиную долю "благодарностей" за которые справедливо заслужила компания Rambus и её RDRAM. Из-за этого, неплохая изначально память DDR достаточно долгое время топталась на месте и за более чем пять лет её тактовая частота выросла всего лишь до 500 МГц, а DDR2 успела проделать путь с DDR2-533 до DDR2-1066 всего лишь за какие-то три года – что, кстати, типичный срок жизни для архитектуры памяти.

Увы, на нынешнем этапе архитектура DDR2 начинает фактически "упираться" в потолок своих возможностей, что завязано на тактовые частоты процессоров и топологию шин. Сейчас пока рано говорить о сроке жизни DDR3, однако не будет ничего невероятного, если через три года ей на смену придёт что-то вроде DDR4. Такова жизнь. Так каков же "потолок" тактовых частот модулей памяти DDR3 DIMM? Пока что речь идёт о чипах DDR3-1600, на базе которых будут выпускаться модули PC3-12800 с пропускной способностью до 12,80 Гб/с. Однако в документации Intel уже встречалось упоминание того, что DDR3 теоретически может быть масштабирована до частот вплоть до 2133 МГц. Есть ли физическая разница между модулями DDR2 и DDR3? Модули памяти DDR3 DIMM для настольных ПК будут обладать 240-контактной структурой, привычной нам по модулям DDR2; однако физической совместимости не будет благодаря различному расположению ключей DIMM. Такая "защита от дурака", предотвращающая установку модулей DDR3 в платы под DDR2 и наоборот предусмотрена не только по причине поконтактной несовместимости модулей, но и в связи с разными напряжения питания и сигнальными уровнями разных поколений оперативной памяти. Какие типы модулей DDR3 будут типичным явлением на рынке памяти? Ожидается, что модули памяти DDR3 будут выпускаться в вариантах Registered DIMM, Unbuffered DIMM, FB-DIMM, SO-DIMM, Micro-DIMM и 16-бит/32-бит SO-DIMM. Относительно форм-факторов памяти DDR3 – что критично для рынка серверов, можно сказать, что будут представлены 1,2-дюймовые (30 мм) модули для 1U серверов, типичные для индустрии с 1999 года, а также VLP-модули высотой 18,3 мм для Blade-серверов, 38 мм модули для 2U серверов и даже более "высокие" модули. Какова будет типичная ёмкость модулей памяти DDR3 DIMM? Ещё на стадии тестирования стандарта DDR3 производители работали с чипами ёмкостью 512 Мбит и создавали 1 Гб модули; теоретически ёмкость модулей DDR3 может достигать 8 Гбит. Типичная ёмкость модулей памяти DDR3 DIMM по мере роста популярности составит 1 Гб – 4 Гб, теоретически – до 32 Гб. Что касается модулей DDR3 SO-DIMM для мобильных ПК, появление образцов которых ожидается в ближайшее время, а начало массового производства (по крайней мере, компанией Samsung) запланировано на начало 2008 года, типичные ёмкости будут располагаться в диапазоне 512 Мб – 4 Гб. Первые модули памяти DDR3 DIMM, безусловно, будут недешёвым явлением. Как скоро ожидается снижение цен на модули памяти DDR3 DIMM до нормального "массового" уровня? Ожидается, что уже в 2007 году производители модулей памяти возьмут агрессивный старт на рынке DDR3, и, по мере становления и нарастания массовости платформ нового поколения, память будет дешеветь. По предварительным прогнозам Intel, память DDR3 получит определённое распространение уже в текущем году, а в 2008 году можно будет говорить об её массовости – по крайней мере, прогнозы iSuppli это подтверждают. Стандарт DDR3 есть, скоро будут платы, а успеют ли производители с чипами DDR3 и модулями DIMM к анонсу? Безусловно. Индустрия в целом готова к появлению DDR3, множество производителей чипов и памяти уже объявили о валидации своих изделий у Intel и готовности к массовому производству.

Полную линейку чипов, прошедших процесс тестирования, квалификации и валидации у Intel можно посмотреть на этой странице:

Validated DDR3 800/1066MHz SDRAM Components

Производители модулей также объявили о полной готовности. Так, компания Corsair уже представила 1 Гб модули DDR3-1066 DHX с таймингами 6-6-6-24, а на перспективу в серии DOMINATOR уже в этом квартале готовится выпуск модулей DDR3-1333 и выше. Компания OCZ Technology на днях представила свои наборы модулей PC3-8500 (1066 МГц, CL 7-7-7-21) в серии Gold Series (с позолоченными радиаторами XTC), в вариантах 2 x 512 Мб (OCZ3G10661GK) и 2 x 1 Гб (OCZ3G10662GK), а также наборы модулей PC3-10666 (1333 МГц, CL 9-9-9-26) той же серии в вариантах 2 x 512 Мб (OCZ3G13331GK) и 2 x 1 Гб (OCZ3G13332GK). Какое количество слотов под модули DDR3 DIMM будет типичным для новых систем?

Первоначально идея использования ёмких 1 Гбит и 2 Гбит чипов преследовала цель уменьшить количество слотов на плате до двух без необходимости жертвовать количеством поддерживаемой памяти. Однако типичный покупатель всё же по-прежнему предпочитает апгрейдиться, осообенно пока память недёшева. Именно поэтому типичная материнская плата по-прежнему будет обладать четырьмя слотами DDR3 DIMM.

Когда поддержка DDR3 будет реализована компанией AMD?

Компания AMD, в числе других лидеров компьютерной индустрии, объявила о поддержке и планах перехода на память DDR3, однако лишь в отдалённой перспективе. Исследования в области поддержки DDR3 компания AMD ведёт в близком сотрудничестве с SimpleTech. Уже достоверно известно, что интегрированные контроллеры памяти процессоров AMD с рабочим названием Barcelona будут поддерживать модули DDR2-1066. Модули DDR2-1066 сейчас проходят процедуру стандартизации в организации JEDEC, и AMD планирует именно с помощью продления жизни DDR2 отсрочить переход на DDR3. Вспомните, та же самая ситуация складывалась и при переходе на DDR2, тогда AMD также достаточно долго не могла распрощаться с DDR. Ожидается, что впервые память DDR3 будет поддерживаться процессорами AMD под разъём AM3, и показаны такие чипы будут не ранее третьего квартала 2008 года. Сейчас специалисты AMD называют переход на массовое использование памяти DDR3 в настольных системах преждевременным – мол, мы подождём 2009 года, когда этот тип памяти станет достаточно массовым и относительно недорогим. Хотя, уже есть информация, что тестирование и валидация чипов компанией AMD, начавшаяся в 2007 году, "встанет на крыло" уже в 2008 году. Что ж, компании Intel вновь предложена роль "локомотива индустрии" в проталкивании новых стандартов. С другой стороны, нельзя не признать, что такое положение – за счёт предложения действительно передовых технологий и производительных решений, регулярно помогает ей, что называется, "снимать сливки". Так что же AMD? Увы, новое процессорное ядро с рабочим названием Griffin, появление которого можно ожидать в начале 2008 года, также будет обладать лишь встроенным контроллером памяти DDR2 - хоть и продвинутым, сдвоенным, с двумя независимыми режимами работы, но, тем не менее, без малейшего намёка на поддержку DDR3. Поскольку производственный цикл процессоров AMD в целом худо-бедно укладывается в 18-месячный цикл, так, приблизительно, и получится, что чипы AMD обзаведутся поддержкой DDR3 не ранее 2009 года, а то и позже. Какие чипсеты с поддержкой DDR3 от Intel можно ожидать в ближайшее время? Что и когда ожидается в рознице? Разумеется, в числе первых системных плат с поддержкой DDR3 стоит ожидать новинки на чипсетах нового поколения Intel 3 Series - те что носили собирательное рабочее название Intel Bearlake. Эти чипсеты будут поддерживать новые процессоры Intel Core c FSB 1333 МГц и новую оперативную память DDR3-1333. Впрочем, сразу стоит оговориться, что не каждый чипсет из семи, ожидаемых в серии Bearlake - X38, P35, G35, G33, G31, Q35 и Q31, будет работать с DDR3 (равно как и с новыми FSB 1333 МГц процессорами) – традиционно, речь идёт лишь о чипсетах для High-end и Mainstream рынка.

Полная официальная информация о чипсетах серии Intel 3 Series Bearlake появится на нашем сайте достаточно скоро. Для статьи FAQ по DDR3 мы подготовили специальную "облегчённую" таблицу, с уточнением поддержки стандартов оперативной памяти.

Спецификации чипсетов серии Intel 3 Series (Bearlake), поддержка DDR3

Чипсет

X38

P35

G35

G33

G31

Q35

Q33

Рабочее название

Bearlake X

Bearlake P

Broadwater

Bearlake G

Bearlake GZ

Bearlake Q

Bearlake QF

Примерная дата анонса

3 квартал

Июнь

3 квартал

Июнь

3 квартал

Сегмент рынка

Энтузиасты, геймеры

Mainstream

Value

Business Mainstream

Business Value

Поддержка CPU Core2 Extreme
Core2 Quad
Core2 Duo
Yorkdale
Wolfdale
FSB 1333 МГц
1066 МГц
800 МГц
Память Слотов

4 (2 DIMM х 2 канала)

Max. ёмкость
Поддержка

DDR3 / DDR2

DDR3 / DDR2

FSB в сочетании с памятью 1333 / DDR3-1333
1333 / DDR3-1066
1333 / DDR3-800
1066 / DDR3-1066
1066 / DDR3-800
800 / DDR3-800
1333 / DDR2-800
1333 / DDR2-667
1066 / DDR2-800
1066 / DDR2-667
800 / DDR2-800
800 / DDR2-667
Встроенная графика Инт. ядро

4 поколение

3,5 поколение

DirectX

DX10

Кодек VC-1
Внешнее видео

PCIe 2х16 (5 Гб/с)

PCIe x16

Южный мост ICH9
ICH9R
ICH9DO
ICH9DH
ICH8
ICH8R
ICH8DH
ICH7
ICH7DH
Технологии PCI Express 2.0
AMT 3.0
VT-D
TXT (LaGrande)
Платформа VPro
Viiv
Как видно из таблицы, первые чипсеты с поддержкой DDR3 - P35 и G33, будут представлены совсем скоро, в июне, с прицелом на поставки первых плат в июне-июле. Разумеется, первые системные платы на этих чипсетах в розничном исполнении будут показаны в дни июньской выставки Computex 2007 в Тайбэе, однако сказать сейчас, многие ли производители рискнут начать поставки своих новинок с поддержкой DDR3 – пока большой вопрос. Впрочем, уже сейчас можно точно сказать, что ряд компаний готовит к производству системные платы с поддержкой как DDR3, так и DDR2. Топового чипсета X38 с двумя слотами PCI Express x16, идущего на замену флагману Intel 975X, придётся подождать до осени. Когда поддержка DDR3 будет реализована в мобильных платформах Intel? Мобильная платформа Intel под кодовым названием Santa Rosa, появление которой ожидается во втором полугодии 2007, будет работать исключительно с памятью DDR2, это заложено в архитектуре чипсетов Intel Mobile 965 Express. То же самое можно сказать об обновлённой версии платформы Santa Rosa с рабочим названием " Santa Rosa+", изменения в которой будут связаны, главным образом, с новыми мобильными процессорами архитектуры Penryn. Другое дело - новое поколение мобильной платформы Intel с рабочим названием Montevina, которая предположительно будет представлена через год, ближе к лету 2008 года. По предварительным данным, платформа Montevina будет обладать полностью обновлённой обвязкой 45 нм мобильных процессоров с архитектурой Penryn. В частности, модельный ряд чипсетов для платформы Montevina под кодовым названием Cantiga с TDP порядка 15 Вт будет оснащаться южными мостами ICH9M, беспроводными модулями Shiloh (Wi-Fi) или Echo Peak (Wi-Fi/WiMAX), LAN-модулем Boaz. Интегрированные версии чипсетов Cantiga будут обладать 457 МГц интегрированной графикой поколения 4.5 (фактически, улучшенная версия грядущего чипсета Calistoga с Gen 4 графикой GMA X3100).

Впрочем, для нас в рамках сегодняшнего материала самым интересным является то, что чипсеты Cantiga будут поддерживать FSB 1066 МГц, а также модули памяти SO-DIMM стандартов DDR2-667 (DDR2-800 поддерживаться не будет) и DDR3-800. Увы, в мобильном исполнении – начиная только с DDR3-800, но и это уже неплохо в плане экономичности, да и производительности. О более далёких перспективах DDR3 для мобильных платформ информации пока нет. Стоит ли в ближайшее время ожидать чипсеты для системных плат с поддержкой DDR3 от других производителей? Говоря о чипсетах DDR3, сразу же стоит оговориться, что пока что речь может идти лишь о поддержке платформ с процессорами Intel. Причина понятна: пока не появятся процессоры AMD с интегрированным контроллером памяти DDR3, говорить не о чем. Компания SiS обещает появление рабочих образцов первых собственных чипсетов с поддержкой DDR3 и встроенной DX10 графикой Mirage 4 уже в ближайшее время. Новые чипсеты, по предварительной информации, получат названия SiS673 и SiS673 FX. Чипсет SiS673 будет поддерживать процессоры Intel с FSB 1066 МГц и 2-канальную память DDR2-800/DDR3-1066, более производительный чипсет SiS673 FX сможет поддерживать DDR2-1066/DDR3-1333 и процессоры с FSB 1333 МГц. Массовое производство SiS673 может начаться в третьем квартале 2007. Первый дискретный северный мост SiS665 будет представлен ближе к концу 2007 года. Начало массового производства SiS665 сейчас позиционируется на 2008 год. Предполагается, что производством чипсета займется UMC с использованием 80-нм техпроцесса. Скорее всего, SiS665 будет поддерживать сразу два стандарта: DDR2 и DDR3. Согласно планам компании, SiS665 будет поддерживать шину PCI Express 2.0. Для рынка мобильных решений SiS планирует представить IGP-чипсеты с поддержкой DirectX 10 и памяти DDR3. Чипсет SiS M673 будет поддерживать "старые" процессоры Pentium 4 NetBurst, M673MX – Pentium M, оба будут работать с DDR3 и DDR2 с рабочими частотами 533/667 МГц. Оба чипсета – SiS M673 и SiS M673MX, будут работать с южными мостами SiS 968/969. Компания VIA Technology планирует представить чипсеты PM960 и PT960, поддерживающие процессоры Intel с шиной FSB 1333 МГц, память DDR3 и новый интерфейс PCI Express 2.0. Интегрированная версия - VIA PM960, с новым графическим ядром S3 Chrome 9 HD (450 МГц), станет основной для ПК класса Vista Premium Ready. Дискретный северный мост PT960 будет поддерживать одноканальную память DDR2-1066/DDR3-1333. Мы надеемся, что эта публикация поможет вам разобраться с новым стандартом оперативной памяти DDR3. Будем рады получить ваши замечания, критику, исправления и дополнения по этой сборке вопросов и ответов. В случае, если среди опубликованного нет ответа на ваш вопрос – пишите, FAQ будет постоянно дополняться и совершенствоваться.

А теперь хочу поговорить о памяти DDR5. Взгляд в будущее, так сказать. Итак, что же такое оперативная память DDR5 и чего следует от нее ожидать? Да и вообще когда нам ее ждать?

Читайте сразу обновленную информацию о DDR5 от 25.09.2017 года чуть ниже в статье

Конкретная дата выхода оперативки DDR5 еще не анонсирована, но прогнозируют ее появление к 2020 году. Хотя, как заверяют в JEDEC , в 2018 году мы уже увидим финальные спецификации и характеристики памяти DDR5. Ее уже сейчас активно разрабатывают.

А что пока известно о характеристиках? Совсем немного. Тактовую частоту планирует удвоить по сравнению с оперативной памятью DDR4, топовой на сегодняшний день. Также увеличится плотность чипов, что позволит увеличить объем каждой планки ОЗУ DDR5 в два раза (опять же по сравнению с DDR4). И снова-таки, как и с каждым предыдущим новым поколением ОЗУ, будет улучшена энергоэффективность. Правда пока нет точной информации с каким напряжением будет работать оперативная память DDR5 (уже есть, смотрите ниже ).

Обновленная информация (сентябрь 2017)

Возрадуйся читатель! Оперативную память DDR5 планируют выпустить немного раньше обещанных сроков. Выпуск перенесли на 2019 год. То есть на год назад.

Оперативная память DDR5 — проект

Помимо этого появилась новая информация о характеристиках памяти DDR5. Рабочая частота ОЗУ будет начинаться с отметки 4800 Mhz. А вот до каких высот она доберется остается только фантазировать. При том, что в предыдущем поколении (DDR4) частота начиналась с 2133 МГц, а сейчас некоторые представители этой памяти могут похвастаться частотой 4600 МГц.

Это конечно «слишком гениально «, но если применить простую пропорцию, то теоретически можно ожидать, что частоты оперативной памяти DDR5 могут подняться выше 10000 МГц в перспективе.

4600 / 2133 * 4800 = 10351… Mhz

Поживем увидим!

Теперь о рабочем напряжении. Стало известно, что напряжение продолжит снижаться и в грядущем поколении снизится до отметки 1,1 Вольта. Не очень большой прорыв в этом направлении, но он есть.

Предыдущие поколения работали на следующих показателях:

  • DDR1 — 2.5 V
  • DDR2 — 1.8 V
  • DDR3 — 1.5 V
  • DDR3L — 1.3 V
  • DDR3U — 1.25 V
  • DDR4 — 1.2 V
  • DDR5 — 1.1 V

Память GDDR5 это не оперативная память DDR5

Чтобы избежать небольшой путаницы, следует упомянуть про видеопамять GDDR5 . Сейчас практически каждая современная видеокарта имеет память такого типа. Но память GDDR5 не имеет ничего общего с оперативной памятью DDR5. Технологически GDDR5 это тот же DDR3, только заточенный под видеокарту. Точно так же, как и GDDR3 технологически был идентичен памяти DDR2. Не путайте!

К слову будет сказано, материнская плата, которая поддерживает видеокарты с графической памятью GDDR3, точно также хорошо будет поддерживать видеокарты с памятью GDDR5. Это несколько отличается от ОЗУ, где под каждое новое поколение оперативной памяти изменяется интерфейс ее подключения (слот).

Самый главный вывод по этому пункту это то, что DDR5и GDDR5 — это совершенно разные и вещи!

Вывод:

Вот такие вот дела у нас с оперативной памятью DDR5. Ждем. Хотя сейчас очень многие все еще сидят на DDR3, никак не могут перейти на DDR4. Но я думаю это ненадолго. Скоро DDR4 полностью вытеснит DDR3. Остается только посочувствовать тем, кто собирает новые компьютеры на базе DDR3, если только их материнка не поддерживает оба типа памяти.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png