Определять неисправность деталей, как установленных на плате, так и в «чистом» виде. Подбирать аналоги для замены, узнаете по каким основным критериям это делается, определять взаимозаменяемость деталей.

На практике узнаете типовые схемы включения с примерами включения в схеме реального устройства. В качестве примера мы рассмотрим схемы наиболее распространённых устройств: блок питания, ноутбуки, мониторы, зарядные устройства и т.д. В результате вы самостоятельно сможете проводить их ремонт на компонентном уровне.

Изучение различных электронных компонентов, встречающихся практически во всех без исключения бытовых и промышленных устройствах электронной техники. Построение схем на их базе, от элементарно простых до более сложных, с построением временных диаграмм и детальным изучением, протекающих процессов

Изучение работы операционных усилителей, компараторов, логических элементов. Также проводиться сборка небольших схем на основе почти всех перечисленных элементов, с изучением их работы, измерением основных параметров или исследованием схем с помощью осциллографа.

Изучение основных принципов работы измерительных приборов, предназначенных для измерения тока напряжения сопротивления, визуального исследования электрических сигналов (осциллограф)

Будут рассмотрены топологии построения схем и примеры реальных схем на базе той или иной топологии. Рассказано об особенностях данных схем и областях применения. Рассмотрим несколько основных типовых схем построения импульсных БП, рассказывается об особенностях и областях применения той или иной схемы. Далее слушателям будут предложены реальные схемы (розданы листы со схемами БП-разными) и они будут должны самостоятельно определить топологию данной схемы. Именно определение топологии построения схемы на 80% определяет успех дальнейшего ремонта, который в 99% случаев придётся проводить, не имея схемы конкретно именно ремонтируемого БП.

Всем слушателям будет предложено рассмотреть несколько десятков электронных компонентов, различного исполнения; по мощности, по способу маркировки (буквенно-цифровое или цветовое) и рассказано что и как обозначается, чем является (диод, резистор, транзистор и т.д.) и для чего служит. Какие ещё варианты исполнения существуют и где какие устанавливаются, в зависимости от характеристик. Мы подготавливаем мастеров по ремонту, чтобы вы могли определить неисправность на любой электронной схеме.

Практические занятия по поиску и устранению неисправностей в электронных устройствах. Можно принести что-то неработающее из дома, и здесь мы коллективно или разбившись на группы это ремонтируем. На практические занятия люди приносят, для ремонта, платы от стиральных машин, гироскутеров, блоков питания и другой техники.

В процессе обучения, даём ученикам различные вопросы или задачки, имеющие нестандартные решения, чтобы не просто вызубрили, как работает тот или иной элемент, но и могли помыслить самостоятельно и применить полученные знания на практике.

Как правило, мы идём навстречу пожеланиям учащихся и делаем по их выбору основной упор при изучении схем, в сторону компьютерной, бытовой техники или телефонов.

Курс подойдет любому, кто планирует разобраться в ремонте кокой-либо электроники. Бытовая техника, промышленная и любая другая, которая работает под управлением электроники.

Обучение на курсах будет интересно как людям с нулевым опытом, так и для тех, кто уже занимается ремонтом техники. Для начала вы можете приехать в наш центр и посмотреть своими глазами как проходят курсы. Вы сможете пообщаться с преподавателем и более подробно узнать о курсе. Мы берём людей любого возраста.

В любой из понедельников вы можете приехать и попробовать абсолютно бесплатно позаниматься на курсе электроники.

После прохождения всего курса вы получите навыки ремонта любой электроники. Все наши ученики могут в любое время обратиться за советом или помощью, и мы рады будем помочь. Бонус! все наши ученики записываются в общую группу в Watsapp, где вы сможете консультироваться и делиться опытом. Также у вас будет скидка на другие наши курсы и конечно же сертификат об окончании курсов по ремонту электроники.

Мы подготавливаем опытных и сертифицированных мастеров, полностью подготовленных к работе. Полученный во время обучения опыт и знания дадут вам уверенность в своих способностях для открытия собственной мастерской по ремонту современной электроники.

Начинающий радиолюбитель: школа начинающего радиолюбителя, схемы и конструкции для начинающих, литература, радиолюбительские программы

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

На сайте работает “Школа начинающего радиолюбителя “. Полный курс обучения включает в себя занятия начиная от азов радиоэлектроники и кончая практическим конструированием радиолюбительских устройств средней сложности исполнения. Каждое занятие строиться на предоставлении слушателям необходимых теоретических сведений и практических видеоматериалов, а также домашних заданий. В ходе учебы каждый обучаемый получит необходимые знания и навыки в полном цикле конструирования в домашних условиях радиоэлектронных устройств.

Для того чтобы стать слушателем школы, необходимо желание и подписка на новости сайта или через FeedBurner, или через стандартное окно подписки. Подписка необходима для своевременного получения новых уроков, видеоматериалов занятий и домашнего задания.

Только подписавшимся на курс обучения в “Школе начинающего радиолюбителя” будут доступны видеоматериалы и домашнии задания по занятиям.

Для тех, кто решил изучать радиолюбительство вместе с нами, необходимо кроме подписки, внимательно изучить подготовительные статьи:






Все вопросы, пожелания и замечания Вы можете оставлять в комментариях в разделе “Начинающим”.

Первое занятие.

Второе занятие.
Лаборатория радиолюбителя. Собираем блок питания.

Определяемся со схемой. Как проверить радиоэлементы.

Подготовка деталей.
Расположение деталей на плате.
Изготовление платы самым простым способом.

Пайка схемы.
Проверка работоспособности.
Изготовление корпуса для блока питания.
Изготовление передней панели с помощью программы “Front Designer”.

Третье занятие.
Лаборатория радиолюбителя. Собираем функциональный генератор.



Проектирование печатной платы с помощью программы “Sprint Layout”.
Применение ЛУТ (лазерно-утюжной технологии) для переноса тонера на плату.

Окончательный вариант платы.
Нанесение “шелкографии”.
Проверка работоспособности генератора.
Настройка генератора с помощью специальной программы “Virtins Multi-Instrument”

Четвертое занятие.
Собираем светомузыкальное устройство на светодиодах

Предисловие.
Определяемся со схемой и изучаем характеристики основных деталей.

Фоторезисты и их применение.
Немного о программе “Cadsoft Eagle”. Установка и русификация официальной версии.

Изучаем программу Cadsoft Eagle:
начальные настройки программы;
– создание нового проекта, новой библиотеки и нового элемента;
– создание принципиальной схемы устройства и печатной платы.

Уточняем схему;
Изготавливаем печатную плату в программе Cadsoft Eagle;
Облуживаем дорожки платы сплавом “Розе”;
Собираем устройство и проверяем его работоспособность специализированной программой и генератором;
Ну и, в конце-концов, радуемся результатам.

Подведем некоторые итоги работы “Школы”:

Если вы последовательно прошли все шаги, то ваш результат должен быть следующим:

1. Мы узнали:
- что такое закон Ома и изучили 10 основных формул;
– что такое конденсатор, резистор, диод и транзистор.
2. Мы научились:
♦ изготавливать простым способом корпуса для устройств;
♦ залуживать печатные проводники простым способом;
♦ наносить “шелкографию”;
♦ изготавливать печатные платы:
– с помощью шприца и лака;
– с использованием ЛУТ (лазерно-утюжной технологии);
– с использованием текстолита с нанесенным пленочным фоторезистом.
3. Мы изучили:
- программу для создания передних панелей “Front Designer”;
любительскую программу для налаживания различных устройств “Virtins Multi-Instrument”;
– программу для ручного проектирования печатных плат “Sprint Layout”;
– программу для автоматического проектирования печатных плат “Cadsoft Eagle”.
4. Мы изготовили:
- двухполярный лабораторный блок питания;
– функциональный генератор;
– цветомузыку на светодиодах.
Кроме того, из раздела “Практикум” мы научились:
- собирать простые устройства из подручных материалов;
– рассчитывать токоограничительные резисторы;
– рассчитывать колебательные контуры для радиоустройств;
– рассчитывать делитель напряжения;
– рассчитывать фильтры низких и верхних частот.

В дальнейшем в “Школе” планируется изготовить несложный УКВ радиоприемник и приемник радионаблюдателя. На этом скорее всего работа “Школы” будет закончена. В дальнейшем, основные статьи для начинающих будут публиковаться в разделе “Практикум”.

Кроме того, начат новый раздел по изучению и программированию микроконтроллеров AVR.

Работы начинающих радиолюбителей:

Интигринов Александр Владимирович:

Григорьев Илья Сергеевич:

Ruslan Volkov:

Петров Никит Андреевич:

Морозас Игорь Анатольевич:

Предисловие 12
Макетные платы, не требующие пайки 12
Простые правила безопасности 13
Простые советы при работе с паяльником 14
Удобная любительская технология изготовления печатных плат 15
Другие полезные советы 16

Глава 1. Вокруг паяльника 20
Рабочее место 20
Инструмент 22
Приборы 27
Компьютер 29
Детали 31
Блок питания 34

Глава 2. Первые опыты с электрическими цепями 36
Что нам понадобится? 36
Резистор 37
Два резистора 41
Диод 43
Транзистор 44
Что мы получили в итоге? 51

Глава 3. Первая собранная схема 52
Перегретый паяльник 52
Блок питания 53
Цифровой вольтметр 64

Глава 4. Активное и реактивное сопротивления 66
Ещё немного о резисторе 66
Конденсатор 67
Катушка индуктивности 71
Колебательный контур 74
Величины и единицы измерения ёмкости и индуктивности 76

Глава 5. Эксперименты с транзистором 79
Некоторые свойства транзистора 79
Схемы включения транзистора 83
Рабочая точка транзистора 85
Несколько слов о полевом транзисторе 88
Выбор транзистора 89

Глава 6. Обратная связь 94
Стабилизация рабочей точки и ООС 94
Частотные характеристики 100
Положительная обратная связь 103

Глава 7. Пополнение рабочего места приборами 109
Генератор синусоидального сигнала 109
Генератор прямоугольных импульсов 113
Делитель напряжения 116
Реализация схем генераторов 117

Глава 8. Как читать электрические схемы 123
Принципиальные схемы – графический язык 123
Как переводить с языка электрических схем 126
Несколько экспериментов со стабилизаторами 130
Компенсационный стабилизатор напряжения 133
Схема реального устройства 135
Ещё одно замечание 136

Глава 9. Разные усилители на транзисторах 139
Входные усилители низкой частоты 139
Выходные усилители 143
Дифференциальный вход и операционный усилитель 147
Высокочастотные входные усилители и АРУ 149
Транзисторы в цифровых микросхемах 152

Глава 10. Пополнение рабочего места усилителем 153
Описание одной из схем усилителя 153
Использование операционного усилителя 154
Использование микросхемы усилителя мощности 156
Некоторые соображения и рекомендации по сборке усилителя 157
Простые правила работы с готовым устройством 159
В измерениях можно потренироваться за компьютером 160

Глава 11. Токи и сигналы 165
Постоянный и переменный ток 165
Сигнал 167
Что ещё полезно знать о сигналах? 169

Глава 12. Радиоприёмник под объективом осциллографа 175
Виртуальный осциллограф и радиоприёмник 175
Чем приёмник прямого усиления отличается от супергетеродинного? 179
Формирование амплитудно-модулированного сигнала 183
Генератор по схеме емкостной трёхточки 186
Приёмники и передатчики 187

Глава 13. Цифровые микросхемы 189
Формируют ли цифровые микросхемы цифры? 189
Триггер 190
Счёт 192
Сумматор 195
Логика и цифры 199
Практическое применение цифровых микросхем 200
О программах и макетной плате 203

Глава 14. Датчики 206
Зачем нужны датчики? 206
Датчик влажности 207
Датчик газа 208
Датчик давления 209
Датчик магнитного поля 209
Датчик оптический 209
Датчик положения (расстояния) 210
Датчик температуры 210
Датчик тока 211
Датчики угла (энкодеры) 211
Датчики ультразвуковые 212
Датчики уровня жидкости 212
Датчики усилия 213
Датчики ускорения 214
Детектор потока жидкости и датчик расхода газа 214
О применении датчиков в любительских условиях 215

Глава 15. Как разговорить датчик? 216
Электрические эквиваленты датчиков 216
Напряжение 216
Резистор 220
Конденсатор 222
И ещё один рецепт 226

Глава 16. Микроконтроллер – это круто? 231
Откладываем по оси времени… 231
Архитектура микроконтроллера 233
Что нужно для работы с микроконтроллером? 234
Среды разработки микроконтроллеров 235
Резюмируя сказанное 240

Глава 17. Пора включить паяльник 241
Подготовка 241
Немного о PCSGU250 243
Опыты с диодом 247

Глава 18. Опыты с конденсаторами, резисторами и транзисторами 253
Интегрирующая электрическая цепь 253
Дифференцирующая RC цепь 254
Опыты с транзисторами 259

Глава 19. Опыты с индуктивностью и микросхемами (ОУ и 555) 267
Дифференцирующая LR цепь 267
Колебательный контур 268
Операционный усилитель 272
Таймер 555 (КР1006ВИ1) 276

Глава 20. Зачем изучать программирование? 283
То, о чём мы будем говорить дальше 283
О программировании «в общем» 287
Программатор 288
Программные инструменты 292

Глава 21. Пополняем домашнюю лабораторию 295
Начало программирования на практике 295
Проверка работы программы 305

Глава 22. Продолжаем разрабатывать свой генератор 310
Разбор результатов предыдущего эксперимента 310
Первое усовершенствование генератора 313
То, что следовало бы выкинуть из рассказа 315
Возвращение к первому усовершенствованию 318

Глава 23. Пополнение лаборатории (продолжение) 321
Несколько диапазонов генератора 321
Выбор диапазонов генератора прямоугольных импульсов 325
Неприятности с большими числами 330

Глава 24. Пополняем домашнюю лабораторию (окончание) 335
Начинаем завершающую работу над программой 335
Когда же появится сигнал? 340
Первая проверка программы 346
Зачем нужен режим отладки (debugging)? 349

Глава 25. Встроенные модули микроконтроллеров 358
Такие разные микроконтроллеры 358
Встроенный модуль АЦП 363
Модуль таймера 365
Модули последовательного обмена данными 366
Модуль PWM 370
Прерывания 373

Глава 26. Микроконтроллер и некоторые датчики 377
Датчик температуры 377
Фотодатчик 379
Свето- и фотодиоды и микроконтроллер 384
Микрофон 386
Датчики емкостной природы 388

Глава 27. «Живой» радиоприёмник и усилитель 389
Что нам сегодня понадобится? 389
Радиоприёмник, усилитель низкой частоты 390
Радиоприёмник, тестовый сигнал 392
Радиоприёмник, гетеродин 394
Радиоприёмник, усилитель промежуточной частоты 395
Генератор-пробник испытательного радиосигнала 396

Глава 28. Осциллограф 400
Что нам понадобится в этой главе? 400
Модуль Arduino и программа Xoscillo 401
Как прочитать синусоиду? 405
Реализация сканирующего напряжения 407
Реализация передачи данных 410
Модернизация процесса ска 413

Глава 29. Связь между электронными устройствами 416
Что нам понадобится? 416
Связи внутри устройств 417
Связь между разными электронными устройствами 418
Что такое протокол? 421
RS485 422
SPI 423
I2C 423
One-wire (1-Wire) 424
CAN 424
Bluetooth 425
Wi-Fi 425
Что мы получили в результате? 426

Глава 30. Передатчик и приёмник данных 427
Передатчик 427
Приёмник 431
Второй этап предварительной проверки 435

Глава 31. Эксперименты с радиоканалом 438
Первые эксперименты с приёмником 438
Окончательные эксперименты с приёмником 446
Что мы получили? 452

Глава 32. Разрабатываем схему кодового замка 453
Что нам понадобится? 453
Электронный кодовый замок (с сайта www.radio-portal.ru) 454
Что мы получили? 464

Глава 33. Разрабатываем регулятор скорости вращения 465
Схема регулятора скорости вращения двигателя постоянного тока 465
Микроконтроллер в схеме регулятора скорости вращения 468
Что мы получили? 479

Глава 34. Такие разные «Мяу» 480
Звуковая сигнализация 480
Эксперименты с микроконтроллером 484

Глава 35. Продолжаем знакомство с микроконтроллером 491
Азы программирования 491
Некоторые детали программирования 494
И вновь азы программирования 497

Глава 36. Микроконтроллер или без него? 502
Переключатель ёлочных гирлянд 502
Переключатель гирлянд на реле 504
Реле на цифровых микросхемах 507
Что мы получили? 510

Глава 37. А не замахнуться ли нам..? 511
Какие есть конструкторы-роботы? 511
Конструктор IE-ROBOPICA 515
Что такое datasheet? 517
Что такое конфигурация МК? 519

Глава 38. Начинаем осваивать микроконтроллер PIC16F887 521
Что нам понадобится? 521
Первая программа 522
Нас трудности не пугают. Нам их только подавай! 525
Что мы получили? 534

Глава 39. Плата RBX-877V2.0 и программирование 536
Что нам понадобится? 536
Продолжаем опыты с микроконтроллером 537
Вновь немного о языке Си 539
Продолжаем опыты с PIC16F887 540
Что мы получили? 545

Глава 40. В движении жизнь 546
Что нам понадобится? 546
Первые опыты с моторами 547
Программа простого движения 549
Первые движения 554
Что мы получили? 557

Глава 41. Если что-то мешает движению вперёд 558
Что нам понадобится? 558
Как работает датчик расстояния? 559
Робот движется вперёд 561
Ещё раз о датчике расстояния и АЦП 562
Революционный держите шаг! 566
Что мы получили? 568

Глава 42. Робот ищет свой путь 569
Что нам понадобится? 569
Что представляют собой датчики в наборе IE-ROBOPICA? 569
Эксперимент по использованию датчиков отражения 570

Глава 43. Ручное управление роботом 576
Сигналы управления 576
Что мы получили? 587

Глава 44. Дочитав руководство к ROBOPICA до конца 588
Что дальше? 588
Модификация ручного управления 588
Управляем роботом с компьютера 590
Программа в Visual Basic 593
Что мы получили? 599

Глава 45. Управление роботом с компьютера (продолжение) 600
Что нам понадобится? 600
Аппаратный модуль интерфейса COM-IR 600
Выбор элементов интерфейса 603
Окончательная сборка интерфейса 609
Что мы получили? 611

Глава 46. Управление с компьютера (продолжение) 612
Если нет полнофункциональной программы Visual Basic 612
Что мы получили? 621

Глава 47. Если не хватает 2 кбайт памяти для программы 622
Windows Vista 622
Linux Fedora 16 630
Подведём некоторые итоги 633

Глава 48. Движение робота в программе для SDCC 634
Файл для работы с модулем PWM (ШИМ) 634
Первое крушение в моём цехе роботостроения 640
Переделываем файл motor.h 642

Глава 49. Продолжение работы с компилятором SDCC 646
Что можно сделать, чтобы работать было удобнее? Windows 646
Что можно сделать, чтобы работать было удобнее? Linux 653
Что мы получили? 657

Глава 50. Жидкокристаллический индикатор и компилятор SDCC 658
Что такое ЖКИ (он же LCD)? 658
Вывод символа на дисплей робота 661
Что ещё нужно выяснить? 667

Глава 51. АЦП и компилятор SDCC 672
Описание работы с АЦП в справке к PIC16F887 672
Конфигурация порта 672
Выбор канала 673
Опорное напряжение АЦП 673
Генератор тактовой частоты преобразователя 673
Форматирование результата 673
Запуск преобразования 674
Пример процедур преобразования 674
Начинаем создавать свои функции для работы с АЦП 676
Преобразование результата работы АЦП в текст 678
Вывод результата работы АЦП на ЖКИ с компилятором SDCC 681

Глава 52. Модуль USART и компилятор SDCC 684
Несколько слов о модуле USART PIC16F887 684
Асинхронный режим EUSART 684
Включение передачи 685
Передача данных 686
Асинхронная передача 686
Включение приёмника 686
Получение данных 686
Асинхронный приём 687
Регистры USART 687
Передача данных через USART 691
Проблемы с прерыванием 693
RB0/INT INTERRUPT 693
Простая программа проверки прерывания 693
Заключение 694

Глава 53. Самодельный дальномер 696
Многозадачность и недорогие микроконтроллеры 696
Дальномер из подручных средств 696
Объединение самодельного дальномера и микроконтроллера 704

Послесловие 713
Вместо последней главы 713
Где в программе транзистор КТ315? 715
Приложение А. Программа TINA-TI 718
P.S. TINA-TI и Linux 736
Приложение Б. Программа Flowcode пятой версии 738
Приложение В. HiAsm вместо VB или Gambas 749
Приложение Г. ROBOPICA и SDCC 760
Приложение Д. Руководство к программе idealCircuit 771
Приложение Е. Руководство к программе Qucs 849

Нетривиально занятие, скажу я вам. :) Дабы облегчить усвоение материала я вводил ряд упрощений. Совершенно бредовых и антинаучных, но более менее наглядно показывающих суть процесса. Методика «канализационной электрики» успешно показала себя в полевых испытаниях, а посему будет использована и тут. Хочу лишь обратить внимание, что это всего лишь наглядное упрощение, справедливое для общего случая и конкретного момента, чтобы понять суть и к реальной физике процесса не имеющая практически никакого отношения. Зачем оно тогда? А чтобы проще запомнить, что к чему и не путать напряжение и ток и понимать как на все это влияет сопротивление, а то я от студентов такого наслушался…

Ток, напряжение, сопротивление.

Если сравнить электроцепь с канализацией, то источник питания это сливной бачок, текущая вода – ток, давление воды-напряжение, а несущееся по трубам говнище – полезная нагрузка. Чем выше сливной бачок, тем больше потенциальная энергия воды, находящейся в нем, и тем сильней будет напор-ток проходящий по трубам, а значит больше дерьма-нагрузки он сможет смыть.
Кроме текущего дерьма, потоку препятствует трение о стенки труб, образуя потери. Чем толще трубы тем меньше потери (гы гы гы теперь ты помнимаешь почему аудиофилы для своей мощной акустики берут провода потолще;)).
Итак, подведем итог. Электроцепь содержит источник, создающий между своими полюсами разность потенциалов – напряжение. Под действием этого напряжения ток устремляется через нагрузку туда, где потенциал ниже. Движению тока препятствует сопротивление, образуемое из полезной нагрузки и потерь. В результате напряжение-давление ослабевает тем сильней, чем больше сопротивление. Ну, а теперь, положим нашу канализацию в математическое русло.

Закон Ома

Для примера просчитаем простейшую цепь, состоящую из трех сопротивлений и одного источника. Схему я буду рисовать не так как принято в учебниках по ТОЭ, а ближе к реальной принципиальной схеме, где принимают точку нулевого потенциала – корпус, обычно равный минусу питания, а плюс считают точкой с потенциалом равным напряжению питания. Для начала считаем, что напряжение и сопротивления у нас известны, а значит нам нужно найти ток. Сложим все сопротивления (о правилах сложения сопротивлений читай на врезке), дабы получить общую нагрузку и поделим напряжение на получившийся результат – ток найден! А теперь посмотрим как распределяется напряжение на каждом из сопротивлений. Выворачиваем закон Ома наизнанку и начинаем вычислять. U=I*R поскольку ток в цепи един для всех последовательных сопротивлений, то он будет постоянен, а вот сопротивления разные. Итогом стало то, что Uисточника = U1 +U2 +U3 . Исходя из этого принципа можно, например, соединить последовательно 50 лампочек рассчитанных на 4.5 вольта и спокойно запитать от розетки в 220 вольт – ни одна лампочка не перегорит. А что будет если в эту связку, в серединку, всандалить одно здоровенное сопротивление, скажем на КилоОм, а два других взять поменьше – на один Ом? А из расчетов станет ясно, что почти все напряжение выпадет на этом большом сопротивлении.

Закон Кирхгоффа.

Согласно этому закону сумма токов вошедших и вышедших из узела равна нулю, причем токи втекающие в узел принято обозначать с плюсом, а вытекающие с минусом. По аналогии с нашей канализацией – вода из одной мощной трубы разбегается по кучи мелких. Данное правило позволяет вычислять примерный потребляемый ток, что иногда бывает просто необходимо при расчете принципиальных схем.

Мощность и потери
Мощность которая расходуется в цепи выражается как произведение напряжения на ток.
Р = U * I
Потому чем больше ток или напряжение, тем больше мощность. Т.к. резистор (или провода) не выполняет какой либо полезной нагрузки, то мощность, выпадающая него это потери в чистом виде. В данном случае мощность можно через закон ома выразить так:
P= R * I 2

Как видишь, увеличение сопротивления вызывает увеличение мощности расходующееся на потери, а если возрастает ток, то потери увеличиваются в квадратичной зависимости. В резисторе вся моща уходит в нагрев. По этой же причине, кстати, аккумуляторы нагреваются при работе – у них тоже есть внутреннее сопротивление, на котором и происходит рассеяние части энергии.
Вот для чего аудиофилы для своих сверхмощных звуковых систем берут толстенные медные провода с минимальным сопротивлением, чтобы снизить потери мощности, так как токи там бывают немалые.

Есть закон полного тока в цепи, правда на практике мне он никогда не пригождался, но знать его не помешает, поэтому утяни из сети какой либо учебник по ТОЭ (теоретические основы электротехники) лучше для средних учебных заведений, там все гораздо проще и понятней описано – без ухода в высшую математику.

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел "Старт " .

Н а страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Е сли Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) - это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя - это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2...32V на базе готового модуля DC-DC преобразователя.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png